img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 10
всего попыток: 17
Задача опубликована: 21.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число называется свободным от квадратов, если оно не делится ни на один квадрат простого числа. Например, числа 1, 2, 3, 5, 6, 7, 10, 11 свободны от квадратов, а числа 4, 8, 9, 12 - нет.
Сколько свободных от квадратов чисел не превышает 330?

Задачу решили: 3
всего попыток: 3
Задача опубликована: 28.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим граф, составленный из блоков A и B, показанных на рисунке:

A B

Блоки соединяются вдоль вертикальных ребер в различном порядке, например, вот так:

Вершины графа будем раскрашивать, используя не более c цветов таким образом, чтобы связанные ребром вершины были окрашены в разные цвета.

Теперь подсчитаем, сколько разноцветных графов можно составить, используя a блоков A, b блоков B и не более c цветов.
Используя один блок A и три цвета, можно получить 24 различных графа. (a=1, b=0, c=3)
Используя два блока B и четыре цвета, можно получить 92928 различных графа. (a=0, b=2, c=4)
Используя два блока A, два блока B и три цвета, можно получить 20736 различных графа. (a=2, b=2, c=3)
А сколько различных графов можно получить, используя не более c=2011 цветов и 100 блоков A или B (a+b=100), так, чтобы a и b были четными числами?
В качестве ответа укажите 8 последних цифр результата.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Будем называть треугольник шестидесятиградусным, если он имеет хотя бы один угол, равный 60 градусам, а длины его сторон выражаются целыми числами.
Обозначим через r радиус вписанной в такой треугольник окружности.
Существует 1580 различных шестидесятиградусных треугольников с r ≤ 100.
Обозначим через T(n) количество различных шестидесятиградусных треугольников с r ≤ n.
Тогда T(100) = 1580T(1000) = 26231 и T(10000) = 394553.
Найдите T(2000000).

Задачу решили: 22
всего попыток: 36
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Kruger

Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.

Задачу решили: 9
всего попыток: 26
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом:

u(0) = 109
u(n+1) = f(u(n))

Найдите u(1018).

Задачу решили: 2
всего попыток: 3
Задача опубликована: 28.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Для данного x назовем наилучшим приближением с максимальным знаменателем d такое рациональное число r/s, для которого
1. s ≤ d
2. для любого лучшего рационального приближения p/q знаменатель q будет больше, чем d (из |x-p/q|<|x-r/s| следует q > d).
Как правило, у вещественных чисел имеется только одно наилучшее приближение с выбранным максимальным знаменателем. Однако есть и исключения. Например, число 9/40 имеет два наилучших приближения для максимального знаменателя 1/6, а именно 1/4 и 1/5. Если хотя бы для одного максимального знаменателя число имеет два различных наилучших приближения, мы будем называть такое число двойственным. Ясно, что все двойственные числа являются рациональными.
Сколько существует двойственных чисел x = p/q, 1/30 ≤ x < 1/20, у которых знаменатель q не превышает 108?

Задачу решили: 2
всего попыток: 58
Задача опубликована: 30.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображен большой круг. Его радиус равен 10000.

Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга.

Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Найдите суммарную площадь всех построенных таким образом кругов (кроме одного исходного круга самого большого размера), радиус которых больше 1. Результат округлите до целого.

Задачу решили: 11
всего попыток: 31
Задача опубликована: 09.04.11 14:01
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Рассмотрим числа, обладающие следующими тремя свойствами:

  1. Число представимо в виде p3q2, где p и q - различные простые числа (например, 72, 200, 500)
  2. Число содержит подстроку "200" в своей десятичной записи (например, 200, 1200, 1202005657)
  3. Изменив в десятичной записи числа одну цифру, невозможно получить простое число (например, 200, 325, 1268)

Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208.

Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.

Задачу решили: 6
всего попыток: 15
Задача опубликована: 04.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для числового множества A обозначим через sum(A) сумму его элементов.
Например, если множество B = {1,3,6,8,10,11}, то sum(B)= 1+3+6+8+10+11=39.

Вычислим суммы для всех 20 трехэлементных подмножеств множества B:
sum({1,3,6}) = 10,
sum({1,3,8}) = 12,
sum({1,3,10}) = 14,
sum({1,3,11}) = 15,
sum({1,6,8}) = 15,
sum({1,6,10}) = 17,
sum({1,6,11}) = 18,
sum({1,8,10}) = 19,
sum({1,8,11}) = 20,
sum({1,10,11}) = 22,
sum({3,6,8}) = 17,
sum({3,6,10}) = 19,
sum({3,6,11}) = 20,
sum({3,8,10}) = 21,
sum({3,8,11}) = 22,
sum({3,10,11}) = 24,
sum({6,8,10}) = 24,
sum({6,8,11}) = 25,
sum({6,10,11}) = 27,
sum({8,10,11}) = 29
.
Некоторые из этих сумм встречаются несколько раз, а некоторые – лишь однажды.
Выпишем в порядке возрастания все уникальные суммы (встречающиеся ровно один раз):
10,12,14,18,21,25,27,29
Наибольшая разница между соседними числами в этой последовательности равна 4 (она встречается в последовательности дважды: 4=18-14 и 4=25-21). Обозначим найденную таким образом величину как D(A,m), где A – исходное множество, а m – количество элементов в подмножестве. Таким образом, D(B,3)=4.

Теперь рассмотрим множество S, состоящее из 120 элементов:
S = {12, 22, ... , 1202}.
Множество S имеет 96614908840363322603893139521372656 подмножеств, состоящих из 60 элементов. Найдите D(S,60) – наибольшую разность между последовательными уникальными суммами 60-элементных подмножеств множества S.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.