Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
6
Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч. Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Задачу решили:
9
всего попыток:
16
Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет. P(5) = 1/1 Найдите сумму всех m, для которых P(m)=1/7777.
Задачу решили:
6
всего попыток:
8
Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте. На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932. Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Задачу решили:
14
всего попыток:
17
Для натурального числа n обозначим через σ2(n) сумму квадратов его делителей. Например,
Задачу решили:
2
всего попыток:
2
В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
Задачу решили:
5
всего попыток:
5
На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Задачу решили:
16
всего попыток:
18
Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n. 5,4,2,1 Ровно две из них начинаются с простых чисел.
Задачу решили:
5
всего попыток:
6
k-значное натуральное число называется сбалансированным, если сумма его первых [k/2] цифр его равна сумме последних [k/2] цифр. Здесь x обозначает округление вверх, например, [π] = 4 и [5] = 5.
Задачу решили:
3
всего попыток:
18
Пусть A и B - битовые последовательности, составленные из нулей и единиц. Теперь предположим, что затраты на передачу нуля составляют 1 копейку, а затраты на передачу единицы - 4 копейки. Тогда стоимость вышеприведенного кода составит 2+6+9+6+9+16=48 копеек. Это далеко не самый дешевый код. Самый дешевый код длины 6 стоит 35 копеек и может быть реализован двумя способами: А сколькими способами может быть реализован самый дешевый код длиной 946583626
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|