Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
5
всего попыток:
6
Будем называть треугольник шестидесятиградусным, если он имеет хотя бы один угол, равный 60 градусам, а длины его сторон выражаются целыми числами.
Задачу решили:
2
всего попыток:
58
На рисунке изображен большой круг. Его радиус равен 10000. Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга. Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Задачу решили:
6
всего попыток:
6
Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч. Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Задачу решили:
6
всего попыток:
8
Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте. На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932. Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).
Задачу решили:
3
всего попыток:
4
Будем строить последовательность строк D0, D1,… Dn …следующим образом. Теперь представим, что плоттер начертил дракона 50-го порядка. На нем отметили точки L и M, в которые перо попало, соответственно, после 1012 и 1013 шагов. Найдите расстояние |LM|. Результат округлите вниз до целого.
Задачу решили:
1
всего попыток:
2
Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты: Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область. Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?
Задачу решили:
7
всего попыток:
8
Рассмотрим замкнутые ломаные, каждая из которых
Задачу решили:
4
всего попыток:
4
Существует несколько определений эллипса. Вот одно из них: <page-break/> Рассмотрим теперь точку P с целочисленными координатами, лежащую во внешней области эллипса e, и проведем из нее прямые PS и PR, касающиеся эллипса e в точках S и R.
Задачу решили:
2
всего попыток:
5
Как известно, японцы застилают полы прямоугольными матами-татами, укладывая их без зазоров и перекрытий согласно строгим традиционным правилам. Хотя в разных частях Японии размер татами различается, везде его стороны соотносятся как 2:1. Поэтому стороны японской комнаты соотносятся как целые числа a и b, а ее площадь можно выразить как s = a × b.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|