img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 169
всего попыток: 497
Задача опубликована: 22.03.09 14:46
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Из каждого узла решетки за один шаг можно попасть только в следующий узел справа или ниже.
Например, для решетки на рисунке размера 4 на 4, указан один из
правильных путей:

euler


Сколько имеется различных путей от верхнего левого угла решетки до правого нижнего угла квадратной решетки размера 40 на 40?

Задачу решили: 86
всего попыток: 248
Задача опубликована: 22.03.09 16:43
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Составьте из цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 все возможные различные числа, начиная с 0, при этом в каждом числе одна цифра должна использоваться не более одного раза, при этом записи вида 012 и 12 означают одно и тоже число. Выпишите полученные числа в порядке возрастания.

Какое число окажется на миллионном месте?

Задачу решили: 23
всего попыток: 79
Задача опубликована: 29.05.09 09:45
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам:

1. во всех отделениях всех корзин разное (ненулевое) количество мячей;

2. во всех корзинах в сумме по отделениям одинаковое количество мячей;

3. количество мячей в корзинах минимально возможное для данного количества корзин.

Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное.

У вас 100 корзин, найти сумму мячей в одной корзине.

Это открытая задача (*?*)
Задача опубликована: 30.05.09 10:48
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 500
Лучшее решение: emm76

Строку натуральных чисел (1, 3, 5, 2, 4) попробуем упорядочить при помощи специальных перестановок: разделим строку на 2 части (1, 3, 5) и (2, 4), первую строку запишем в обратном порядке и присоединим ко второй, в результате получим (5, 3, 1, 2, 4). Далее действуем также - разбиваем строку на 2 любые части (любая часть может быть пустой), первую часть записываем в обратном порядке и просоединяем ко второй. При помощи перестановок:

(5, 3, 1, 2, 4) = (5, 3, 1, 2, 4) + () -> (4, 2, 1, 3, 5)

(4, 2, 1, 3, 5) = (4, 2, 1, 3) + (5) -> (3, 1, 2, 4, 5)

(3, 1, 2, 4, 5) = (3, 1, 2) + (4, 5) -> (2, 1, 3, 4, 5)

(2, 1, 3, 4, 5) = (2, 1) + (3, 4, 5) -> (1, 2, 3, 4, 5)

За какое минимальное количество перестановок гарантированно можно упорядочить строку чисел от 1 до 100?  

Задачу решили: 34
всего попыток: 53
Задача опубликована: 31.05.09 07:47
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами:

10 + 22
11 + 21
12 + 20
13 + 19
14 + 18
15 + 17
16 + 16
10 + 10 + 12
10 + 11 + 11

А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?

Задачу решили: 35
всего попыток: 65
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 29
всего попыток: 51
Задача опубликована: 12.06.09 08:27
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:

 

Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b.

Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?

Задачу решили: 0
всего попыток: 3
Задача опубликована: 17.07.09 10:13
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа. 

Задачу решили: 61
всего попыток: 115
Задача опубликована: 14.08.09 14:29
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: shev (Vya Shevelev)

В одной стране, когда население достигло 1 миллиарда, правитель выдал всем жителям порядковые номера от 1 и до 109. В этой стране счастливым считается число 888, поэтому сначала осчастливили тех, у кого номер оказался кратным 888. Затем счастливчиков упорядочили в порядке возрастания номеров и отобрали тех, кто оказался на местах кратных 888. Эту процедуру продолжали до тех пор, пока участников стало меньше 888. Их и объявили суперсчастливчиками. Чему равна сумма изначальных номеров суперсчастливчиков?

Задачу решили: 12
всего попыток: 22
Задача опубликована: 17.08.09 12:45
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Для примера давайте рассмотрим последовательность кубов натуральных чисел. Она порождается функцией un = n3: 1, 8, 27, 64, 125, 216, ...
Допустим, нам известны только два первых члена последовательности. Руководствуясь принципом "чем проще, тем лучше", мы можем воспользоваться линейной функцией и предсказать, что следующее за 1 и 8 значение будет равно 15. Если мы знаем три члена последовательности, то, пользуясь все тем же принципом простоты, мы можем описать ее квадратичным многочленом.
Обозначим через OP(k, n) n-ый член последовательности, порожденной оптимальным полиномиальным приближением, основанном на знании первых k членов последовательности. Ясно, что значения многочлена OP(k, n) точно совпадут с первыми k членами последовательности, а первым несовпадающим членом (ПНЧ), если есть такой, будет OP(k, k+1); если у многочлена имеется OP(k, n), который при некотором n несовпадает с соответствующим членом последовательности, мы будем называть недостаточным.
Выпишем первые OP для кубической последовательности:
k=1 OP(1, n) = 1 : 1, 1, 1, 1, ...
k=2 OP(2, n) = 7n-6 : 1, 8, 15, ...
k=3 OP(3, n) = 6n2-11n+6 : 1, 8, 27, 58, ...
k=4 OP(4, n) = n31, 8, 27, 64, 125, ...
Ясно, что для кубической последовательности есть только три недостаточных многочлена.  Их ПНЧ показаны в таблице синим цветом. Вычислив сумму ПНЧ для всех нехороших многочленов, получим  1 + 15 + 58 = 74.
Рассмотрим последовательность, заданную следующим многочленом десятой степени:
un  = -n + 2n2 - 3n3 + 4n4 - 5n5 + 6n6 - 7n7 + 8n8 - 9n9 + 10n10
Найдите сумму ПНЧ всех недостаточных многочленов для данной последовательности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.