Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Задачу решили:
18
всего попыток:
44
Строка состоит из 33 символов A и B. При этом в каждой подстроке, длина которой больше 9, количество символов A как минимум на 3 больше количества символов B. Сколько таких строк существует?
Задачу решили:
46
всего попыток:
84
Найти сумму всех натуральных чисел меньших миллиона в записи которых во всех системах счисления с основаниями от 2 до 10 нет подряд идущих двух нулей?
Задачу решили:
12
всего попыток:
22
Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Задачу решили:
10
всего попыток:
15
Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия:
Задачу решили:
26
всего попыток:
42
На рисунке в клетки поля размером 5x5 записаны по спирали последовательно простые числа. Запишите таким же образом, по спирали, последовательно простые числа в клетки поля размером 100x100. Начиная с левого нижнего поля необходимо пройти в правое верхнее поле, двигаться при этом можно только на одну клетку вправо или одну клетку вверх. Найдите такой путь, что сумма чисел в его клетках является максимальной. В ответ введите эту сумму.
Задачу решили:
44
всего попыток:
57
Последовательность Фибоначчи определяется рекуррентным соотношением: Fn = Fn-1 + Fn-2, где F1 = 1 и F2 = 1. 317-ый член последовательности Фибоначчи равен 793591407804151926593793042126891128819610710140145037958273777397. Три его первые цифры совпадают с тремя последними, но идут в обратном порядке. Это наименьший член последовательности, обладающий данным свойством. Пусть Fk - наименьший член последовательности, у которого пять первых цифр совпадают с пятью последними, но идут в обратном порядке. Найдите k.
Задачу решили:
6
всего попыток:
14
Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия: Найдите количество непустых особых множеств А, все элементы которых не превышают 50.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|