img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 22
Задача опубликована: 29.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В каждой ячейке квадрата размера 4 на 4 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми четырехзначными числами. Сколько различных простых квадратов существует?

Задачу решили: 6
всего попыток: 14
Задача опубликована: 05.04.10 08:00
Прислал: admin img
Источник: Международная олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:

1 2 3 4
8 7 6 5

 Разрешены такие преобразования:

  1. перестановка верхнего и нижнего рядов
  2. циклический сдвиг вправо на один квадрат (при этом левый нижний квадрат перемещается вверх и становится левым верхним)
  3. поворот по часовой стрелке четырех средних квадратов.

Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований.

За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.

Задачу решили: 0
всего попыток: 6
Задача опубликована: 19.04.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, из которого такими ходами можно получить наибольшее количество различных простых чисел.

Задачу решили: 34
всего попыток: 63
Задача опубликована: 26.04.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Первые 10 миллионов простых чисел записаны последовательно в ряд. Какое количество нулей находится на четных местах?

Задачу решили: 11
всего попыток: 33
Задача опубликована: 17.05.10 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?

Задачу решили: 33
всего попыток: 48
Задача опубликована: 31.05.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.

Задачу решили: 4
всего попыток: 12
Задача опубликована: 07.06.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?

Задачу решили: 0
всего попыток: 0
Задача опубликована: 14.06.10 08:00
Прислал: admin img
Источник: Московская областная олимпиада школьников
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Федя хочет доказать Володе, что его способ сложения не обладает свойством ассоциативности. В частности, Федя утверждает, что существуют три числа, для которых важен порядок, в котором их складывают (при этом разрешается складывать числа в любом порядке, например можно сначала сложить первое число и последнее, а затем прибавить к ним среднее). Федя привел даже пример трех таких чисел.
Сколько существует троек чисел a, b, c, таких, что a < b < c < 1000000 и a+(b+c) < (a+b)+c.

Задачу решили: 59
всего попыток: 88
Задача опубликована: 21.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?

Задачу решили: 51
всего попыток: 92
Задача опубликована: 28.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: katalama (Иван Максин)

Цепочки цифр (строки) создаются по следующему правилу:
Первая строка состоит из двух цифр "1". Каждая из последующих цепочек создается такими действиями: берется цифра, на единицу большая максимальной цифры, использовавшейся в предыдущей строке. Эта цифра вставляется в начало, в конец и между всеми цифрами предыдущей строки. Вот первые 4 строки, созданные по этому правилу:
(1) 11
(2) 21212
(3) 32313231323
(4) 43424341434243414342434

Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.