img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 15
Задача опубликована: 08.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольник Паскаля:

 1 
 1  1 
 1  2  1 
 1  3  3  1 
 1  4  6  4  1 
 1  5  10  10  5  1 
 1  6  15  20  15  6  1 
1  7  21  35  35  21  7  1
.........

В первых восьми его строках содержится 12 различных чисел:
1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 и 35.
Назовем натуральное число свободным от квадратов, если оно не кратно никакому квадрату простого числа. В первых восьми строках  треугольника Паскаля содержится 10 различных чисел, свободных от квадратов, а два числа – 4 и 20 – не свободны от квадратов.
Сколько различных чисел, свободных от квадратов, содержится в первых 500 строках треугольника Паскаля?

Задачу решили: 18
всего попыток: 27
Задача опубликована: 11.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Числами Хэмминга называются такие натуральные числа, у которых нет простых делителей, больших, чем 5. Вот первые числа Хэмминга: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. Их сумма равна 75. Существует 1105 чисел Хэмминга, не превышающих 108. Их сумма равна 14954859000

Если у натурального числа нет простых делителей, превышающих n, мы будем называть его обобщенным числом Хэмминга типа n. Например, числа Хэмминга являются обобщенными числами Хэмминга типа 5.

Найдите сумму обобщенных чисел Хэмминга типа 70, не превышающих 2?109.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 15.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На доске записали 17-значное число, являющееся полным квадратом. Затем 8 цифр стерли и заменили их звездочками. Вот, что получилось:
1 * 4 * 1 * 4 * 1 * 4 * 1 * 4 * 1
Найдите сумму всех 17-значных чисел, которые могли быть написаны на доске первоначально.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 27.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для натурального числа n обозначим через σ2(n) сумму квадратов его делителей. Например,
σ2(6) = 12 + 22 + 32 + 62 = 50
σ2(25) = 12 + 52 + 252 = 651
Число 50 начинается с цифры 5, а число 651 – с цифры 6.
Найдите сумму таких n из интервала 0 < n < 64 000 000, для которых σ2(n) начинается с цифры 6.

Задачу решили: 16
всего попыток: 18
Задача опубликована: 04.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n.
Взяв некоторое число n,  будем строить цепочку n, φ(n), φ(φ(n)), φ(φ(φ(n)))…, пока не получим 1. Например, начав с 5, получим последовательность 5,4,2,1, содержащую 4 члена. Ниже приведены все последовательности, содержащие 4 члена.

5,4,2,1
7,6,2,1
8,4,2,1
9,6,2,1
10,4,2,1
12,4,2,1
14,6,2,1
18,6,2,1

Ровно две из них начинаются с простых чисел.
Найдите сумму всех простых чисел, не превышающих 40000000, с которых начинается последовательность длиной 25 и более членов.

Задачу решили: 11
всего попыток: 14
Задача опубликована: 09.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим числа t(n) вида 2n2-1 при n>1. Вот первые восемь таких чисел:
7, 17, 31, 49, 71, 97, 127, 161
Шесть из них – простые, и только два (49=7×7 и 161=7×23) – составные. Сумма простых t(n) при n≤9 равна 7+17+31+71+97+127=350. Сумма простых t(n) при n≤10000 равна 135049480088. Найдите сумму простых t(n) при n≤3?107. В качестве ответа укажите 8 младших разрядов результата.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 11.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

k-значное натуральное число называется сбалансированным, если сумма его первых  [k/2]  цифр его равна сумме последних  [k/2] цифр. Здесь  x  обозначает округление вверх, например, [π] = 4 и [5] = 5.
Понятно, что все палиндромы являются сбалансированными, как и число 13722.
Обозначим через T(n) сумму всех сбалансированных чисел, меньших, чем 10n.
Например, T(1) = 45, T(2) = 540 and T(5) = 334795890.
Найдите остаток от деления T(2000) на 315.

Задачу решили: 3
всего попыток: 18
Задача опубликована: 16.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть A и B - битовые последовательности,  составленные из нулей и единиц.
Если A состоит из k битов и совпадает с отрезком  длиной k, с которого начинается B (k левых битов), то A называют префиксом B.
Например, 00110 является префиксом последовательности 001101001, но не  является префиксом последовательностей 00111 и 100110.
Префиксным кодом длины n будем называть набор из n битовых последовательностей, ни одна из которых них не является префиксом другой.
Вот, например, префиксный код длины 6:
00, 010,011,100,101,1111

Теперь предположим, что затраты на передачу нуля составляют 1 копейку, а затраты на передачу единицы - 4 копейки. Тогда стоимость вышеприведенного кода составит 2+6+9+6+9+16=48 копеек. Это далеко не самый дешевый код. Самый дешевый код длины 6 стоит 35 копеек и может быть реализован двумя способами:
1,01,00000,001,0001,00001
0000,01,10,001,0001,11

А сколькими способами может быть реализован самый дешевый код длиной 946583626

Задачу решили: 9
всего попыток: 15
Задача опубликована: 30.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Будем называть натуральное число A александрийским, если есть такие целые p, q, r, что
A = p·q·r и 1/A=1/p+1/q+1/r.
Примером александрийского числа является 630 (p = 5, q = -7, r = -18). Вот семь первых александрийских чисел:
6, 42, 120, 156, 420, 630, 930.
930 – наибольшее александрийское число, не превышающее 1000.
Найдите наибольшее александрийское число, не превышающее 1,5?1015.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 27.06.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем квадратный корень из несократимой дроби r/s (s≤d), такой, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p2/q2-x| < |r2/s2-x| => q>d.
Найдите сумму знаменателей наилучших приближений 3√n со знаменателем, не большим, чем 1010, для всех простых чисел n, не превышающих 100000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.