Лента событий:
solomon
решил задачу
"Дырявый квадрат-4"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
20
Назовем натуральное число дважды квадратным, если оно является квадратом натурального числа и из его цифр можно составить большее число, также являющееся квадратом натурального числа. Например, 256 = 162 - дважды квадратное, поскольку 625=252. Найдите количество дважды квадратных чисел, меньших 1015.
Задачу решили:
4
всего попыток:
6
Построим треугольник из натуральных чисел так, как показано на рисунке, и отметим в нем простые числа: 1 Каждое число в этом треугольнике может иметь до восьми соседей. Найдите max(S(n)) при 3000000<=n<3000010
Задачу решили:
0
всего попыток:
1
Подсчитать количество 100-значных натуральных чисел, в которых суммы цифр в двоичной и десятичной системах счисления совпадают.
Задачу решили:
22
всего попыток:
36
Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.
Задачу решили:
9
всего попыток:
26
Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом: u(0) = 109 Найдите u(1018).
Задачу решили:
2
всего попыток:
3
Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Задачу решили:
7
всего попыток:
13
Даны наборы чисел (xn, yn, rn), n=1,...100, задающие окружности с центром в точке с координатами (xn, yn) и радиусом rn. Эти числа выбираются так двухзначные числа состоящие из цифр после запятой в записи числа π, стоящие соответственно для xn - на n и n+1 местах, для yn - на n+2 и n+3 местах, и rn - на n+4 и n+5 местах. Таким образом, x1=14, y1=15, r1=92 и т.д. Найдите количество точек пересечения (включая точки касания) этих окружностей.
Задачу решили:
2
всего попыток:
58
На рисунке изображен большой круг. Его радиус равен 10000. Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга. Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Задачу решили:
0
всего попыток:
0
Треугольники с целыми длинами строн называются почти прямоугольными, если a2+b2=c2±1 (a≤b≤c). Сколько существут различных почти прямоугольных треугольников с периметром меньшем 1015.
Задачу решили:
11
всего попыток:
31
Рассмотрим числа, обладающие следующими тремя свойствами:
Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208. Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|