Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
3
всего попыток:
8
Сколько существует 18-значных натуральных чисел n, таких, что сумма цифр n равна сумме цифр числа 137n?
Задачу решили:
10
всего попыток:
11
Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде p = (x4-y4)/(x3+ y3), где x и y — натуральные числа. Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.
Задачу решили:
6
всего попыток:
8
Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:
Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса. Тогда Q(4)=1, Q(30) =1242, Q(60) =248282. Найдите Q(120).
Задачу решили:
10
всего попыток:
12
Будем называть четное натуральное число N приемлемым, если все его различные простые делители являются последовательными простыми числами. В частности, все положительные степени 2 являются приемлемыми. Число N=630 приемлемо, поскольку оно четно, а его различные простые множители – 2,3,5,7 – это последовательные простые числа. Число N=660 неприемлемо, поскольку в последовательности его простых множителей – 2,3,5,11 – пропущено простое число 7. Если N – приемлемое число, то наименьшее число M>1, для которого N+M – простое число, будем называть псевдо-форчуновым числом приемлемого числа N. Найдите наименьшее приемлемое N, для которого псевдо-форчуново число равно 97.
Задачу решили:
4
всего попыток:
7
Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6. Обозначим через S(n) количество натуральных чисел k < 10n, таких что
Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036. Найдите остаток от деления S(2012) на 109.
Задачу решили:
3
всего попыток:
3
Рассмотрим две окружности, у которых и центры, и точки пересечения имеют целочисленные координаты. Выпуклую область, ограниченную такой парой окружностей будем называть линзой, если она не имеет внутренних точек с целочисленными координатами. Радиусы окружностей, ограничивающих линзу, назовем радиусами линзы. На рисунке ниже показаны следующие окружности: C0: x2+y2=25 Линзы, заключенные между окружностями C0 и C1 и между C0 и C2, закрашены красным. Обозначим через L(N) количество различных пар чисел (r1,r2), для которых существует линза с радиусами r1 и r2, и 0<r1≤ r2≤ N. Можно проверить, что L(10) = 30 и L(100) = 3442. Найдите Σ L(10k), где 1 ≤ k ≤ 5.
Задачу решили:
5
всего попыток:
6
Рассмотрим треугольник ABC с целочисленными сторонами. Пусть k – биссектриса угла ACB, m – касательная в точке C к окружности, описанной вокруг ABC, а прямая n проведена через точку B параллельно m. Прямые k и n пересекаются в точке E, как показано на рисунке: Сколько существует треугольников ABC со сторонами BC ≤AC ≤AB≤ 30000, для которых длина BE оказывается целым числом?
Задачу решили:
4
всего попыток:
4
Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89. Такую сумму называют представлением Цекендорфа. Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3. ∑z(n) для всех шестизначных n равна 7236250. Найдите ∑z(n) для всех 17-значных n.
Задачу решили:
2
всего попыток:
5
Лёва и Петя поспорили, у кого лучше память, и решили проверить. Для этого они обзавелись генератором случайных чисел, настроили его на получение случайных чисел от 1 до 10 и стали соревноваться, кто больше чисел запомнит. По условию игры участник получает очко, если очередное число все еще хранится в его памяти. Побеждает тот, кто набрал больше очков. По ходу дела выяснилось, что и Лёва, и Петя могут удержать в голове не более пяти разных чисел. Если игрок уже помнит пять чисел, то чтобы запомнить следующее, не содержащееся к этому моменту в его памяти, он вынужден забыть одно из имеющихся. Однако оказалось, что забывание происходит несколько по-разному:
В начале соревнования память игроков свободна. Вот пример начала игры:
Обозначим количество очков, которые Лёва и Петя набрали после 50 туров через L и P, соответственно. Найдите математическое ожидание величины (L-P)2, результат умножьте на 108 и округлите до ближайшего целого.
Задачу решили:
2
всего попыток:
2
На плоскости даны четыре точки с целочисленными координатами: A(a, 0), B(b, 0), C(0, c) и D(0, d), где 0 < a < b и 0 < c < d. Точка P(x,y) с целочисленными координатами выбрана на отрезке AC так, что треугольники ABP, CDP и BDP оказываются подобными.
Легко показать, что при этом a=c=x+y. Поэтому, задав подходящим образом четверку чисел (x,y,b,d), мы однозначно определим размер и положение наших треугольников. Например, четверки (x,y,b,d)=(1,1,3,4) и (x,y,b,d)=(1,1,4,3) обе удовлетворяют указанным условиям: каждая из них задает три подобных треугольника. Мы будем считать различными такие четверки, отвечающие взаимно симметричным конфигурациям. При b+d<100 существует 110 различных четверок, задающих три подобных треугольника. При b+d<100 000 существует 395662 различных четверок, задающих три подобных треугольника. Сколько существует различных четверок, задающих три подобных треугольника при b+d<100 000 000?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|