img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 126
всего попыток: 135
Задача опубликована: 31.05.09 19:12
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Некоторые числа обладают интересным свойством:

1233 = 122 + 332990100 = 9902 + 1002.

Найти наибольшее 8-значное число ABCDEFGH такое, что ABCDEFGH=ABCD2+EFGH2.

Задачу решили: 16
всего попыток: 104
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+da+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?

Задачу решили: 35
всего попыток: 65
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 20
всего попыток: 90
Задача опубликована: 05.06.09 07:51
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Необходимо разложить 8290 кафельных плиток размера 1x1 на пол размером 68x122, так чтобы в каждой строке и в каждом столбце было четное количество плиток, при этом на одно место можно положить не более одной плитки. Сколько существует способов такой укладки?

Задачу решили: 44
всего попыток: 65
Задача опубликована: 05.06.09 10:50
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Известно, что если квадратный корень из целого числа не является целым числом, то он не будет и рациональным. Поэтому соответствующая ему бесконечная десятичная дробь не будет периодической. Рассмотрим десятичное разложение квадратного корня из двух:
1.41421356237309504880...
Сумма ста первых десятичных знаков этого разложения равна 475.

Найдите сумму тысячи первых десятичных знаков корня квадратного из трех.

Задачу решили: 18
всего попыток: 30
Задача опубликована: 07.06.09 19:30
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?

Задачу решили: 45
всего попыток: 61
Задача опубликована: 08.06.09 11:06
Прислал: admin img
Вес: 2
сложность: 2 img
баллы: 100
Лучшее решение: SemmZemm (Семён Марчук)

Найти минимальное n, такое что в записи n! встречаются все двухзначные числа. 

Задачу решили: 29
всего попыток: 51
Задача опубликована: 12.06.09 08:27
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:

 

Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b.

Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?

Задачу решили: 25
всего попыток: 99
Задача опубликована: 15.06.09 21:36
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Пусть S < 109. Найти наибольшее значение S, для которого существует максимальное количество прямоугольников с целочисленными сторонами и площадью равной S.

Задачу решили: 47
всего попыток: 115
Задача опубликована: 18.06.09 15:03
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: provdk (Николай Егоров)

Номера кредитной карты состоят из 16 цифр (все цифры не могут быть нулями одновременнно). Номер является счастливым, если сумма первых восьми цифр равна сумме последних восьми. Сколько всего таких счастливых номеров?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.