Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
73
Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям: a1 делится на 1; a1a2 делится на 2; a1a2a3 делится на 3; ... a1a2a3...a24 делится на 24.
Задачу решили:
6
всего попыток:
16
В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.
Задачу решили:
34
всего попыток:
195
Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, а затем относительно горизонтали, чтобы нижний край наложился на верхний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки изначально были пронумерованы числами снизу "змейкой": самый нижний ряд - слева направо, второй ряд - справа налево продолжает нумерацию и так далее до самого верха. Какую клетку нужно отметить, чтобы в результате складывания она оказалась на самом верху?
Задачу решили:
6
всего попыток:
8
Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Задачу решили:
14
всего попыток:
29
Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число. Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат. Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа. Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке. Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине. Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии. Сэм и Макс предложили разные конструкции прибора. Работа прибора Сэма показана на картинке слева. Когда этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет В таблице приведен расчет энергопотребления прибора Сэма для числа 137. "137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается). "11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается). "2":(5) × 2 = 10 переключений ("2" включается и выключается). Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии. Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа. Вот, как он будет работать с числом 137: "137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит) "11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2"). "2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2"). Итого: 30 переключений. Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии. Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих 2×107.
Задачу решили:
2
всего попыток:
2
Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.
Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон. К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве. Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт. 6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно. Пусть C - максимальное количество карт, которые можно иметь при себе. Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”). Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени. Например, M(3,6)=123 и M(3,7)=366. Поэтому ΣM(3,R)=489 при 6≤R≤7. Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15. Найдите ΣM(5,R) при 1≤R≤60.
Задачу решили:
0
всего попыток:
0
Вообразите бесконечный в оба конца ряд чаш, перенумерованных целыми числами. В некоторых чашах лежат бобы. Разрешается делать ходы следующего вида: взять два боба из одной чаши и разложить их в две соседние. Игра заканчивается, когда сделать ход невозможно. В примере на рисунке в две соседние чаши положили 2 и 3 боба, а остальные чаши оставили пустыми. Как видно, такую игру можно закончить за 8 ходов.
Рассмотрим последовательность целых чисел bi следующего вида: b0 = 0, b1 = 289, b2 = 145 bi = (bi-1 + bi-2 + bi-3) mod 2013, где x mod y означает остаток от деления x на у. Пусть количество бобов в двух соседних чашах определяется числами b1 = 289 и b2 = 145, а остальные чаши в начальном положении пусты. В этом случае игру можно закончить за 3419100 ходов. Подсчитайте, сколько ходов потребуется для завершения игры , если в начальном положении в чашах с номерами от 1 до 1500 лежит b1, b2, ... b1500 бобов, соответственно, а остальные чаши пусты.
Задачу решили:
1
всего попыток:
1
Полем игры из этой задачи является полоска из n клеток, а фишками — монеты. Выигрышной называется позиция, при которой очередной игрок, правильно выбирая ходы, может обеспечить себе победу независимо от действий второго игрока. Остальные позиции называются проигрышными.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|