Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
33
Составим последовательность чисел следующим образом: Пусть первое число n, а каждое следующее - сумма квадратов цифр предыдущего числа в шестнадцатеричной системе отсчета. Оказывается, независимо от начального числа последовательность зациклится. Либо зациклится числом 1, либо циклом содержащим 50 (3216). Например: 5 → 19 → 52 → 1D → AA → C8 → D0 → A9 → B5 → 92 → 55 → 32 → A9 → → B5 → 92 → 55 → 32; 2 → 4 → 10 → 1 → 1 Для всех начальных номеров n последовательности меньших 100000016 определите содержит ли последовательность 50 (3216) и в ответе укажите количество последовательностей содержащих 50 (3216).
Задачу решили:
29
всего попыток:
47
Дана таблица из чисел, надо найти минимальный путь левого верхнего угла до правого нижнего. Возможны только движения: вправо, вниз и вправо-вниз. Длина пути считается так: число в левом верхнем углу, и каждый ход к данному числу прибавляется число на которое мы переходим, если движения вправо и вниз, и удвоенное число на которое мы переходим, если движение вправо-вниз. Пример кратчайшего пути для таблицы 4 на 4: 40,35,13,32 Найдите длину минимального пути в таблице 40 на 40: 71,78,41,12,23,40,74,98,98,92,98,46,63,99,44,46,83,78,18,48,21,84,18,69,41,57,91,25,33,12,63,22,84,18,37,11,15,15,87,47
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Задачу решили:
0
всего попыток:
3
Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа.
Задачу решили:
26
всего попыток:
31
Собственным делителем числа называется всякий его делитель, отличный от самого числа. Например, для числа 28 собственные делители - это 1, 2, 4, 7 и 14. Их сумма равна исходному числу 28, и за это его называют совершенным. Сумма собственных делителей числа 220 равна 284, а сумма собственных делителей 284 равна 220. Подобные пары чисел называют дружественными. Они образуют контур из двух элементов. Есть контуры и подлиннее. Например, начав с числа 12496, мы можем построить контур из пяти элементов: 12496 → 14288 → 15472 → 14536 → 14264 (→ 12496 → ...) Построенную таким образом последовательность, начинающуюся и заканчивающуюся одним и тем же числом, мы будем называть дружественным контуром. Найдите сумму элементов самого длинного дружественного контура, состоящего из чисел, не превышающих 1 000 000.
Задачу решили:
34
всего попыток:
195
Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, а затем относительно горизонтали, чтобы нижний край наложился на верхний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки изначально были пронумерованы числами снизу "змейкой": самый нижний ряд - слева направо, второй ряд - справа налево продолжает нумерацию и так далее до самого верха. Какую клетку нужно отметить, чтобы в результате складывания она оказалась на самом верху?
Задачу решили:
54
всего попыток:
65
Парой простых называются два простых числа, разность между которыми 2. Наибольшая известная сейчас пара простых это: 2003663613*2195000 - 1 и 2003663613*2195000 + 1. Каждое состоящее из 58711 цифр. Найдите последние 10 цифр их произведения и укажите их в ответе.
Задачу решили:
57
всего попыток:
106
Чему равна сумма цифр находящихся на местах с простыми номерами в десятичной записи числа 210000?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|