img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 55
Задача опубликована: 11.05.09 23:30
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Из числа 41063625=3453 перестановкой цифр можно получить еще два числа, которые являются кубами: 56623104=3843 и 66430125=4053. Найти наименьшее число, являющееся четвертой степенью натурального числа, перестановкой цифр в котором можно получить еще ровно 2 различных числа, являющихся четвертыми степенями.

Задачу решили: 23
всего попыток: 89
Задача опубликована: 12.05.09 21:35
Прислал: morph img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовём число a представимым n-ной степенью, если существует натуральные числа x и n, такие что a = xn.

Найдите количество n-значных чисел, которые являются представимыми степенью n или n/2.

Например, четырехзначное число 1024 представимо как вторая степень (322), а число шестизначное число 531441 представимо как шестая степень (96).

Задачу решили: 45
всего попыток: 84
Задача опубликована: 12.05.09 21:38
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Найти сумму всех n-значных натуральных чисел, являющихся степенями порядка 2n некоторых натуральных чисел.

Задачу решили: 43
всего попыток: 127
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Игра Ним - игра для двух человек. Правила игры очень просты.
Есть несколько кучек камней. Двое по очереди делают ходы. Ход заключается в том, что игрок выбирает непустую кучку и берет из нее любое число камней (ненулевое). Проигрывает тот, кто не может сделать ход. Если изначально в игре три кучки: 10, 15, 20, то при правильной игре выиграет первый игрок, а если 10, 20 и 30, то второй. Найдите минимальное n для которого в игре "10 20 30 40 50 60 70 80 90 n" выиграет второй.

Задачу решили: 28
всего попыток: 70
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: tyamgin (Ivan Tyamgin)

Найти наименьшее натуральное число n для которого 2n + 3 делится на простое число 625406681329.

Задачу решили: 63
всего попыток: 85
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Найти наименьшее натуральное число, которое при делении на 123 дает остаток 12, при делении на 239 дает остаток 57, при делении на 361 - остаток 239, при делении на 566 - остаток 361, а при делении на 1237 - остаток 566.

Задачу решили: 12
всего попыток: 46
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Известно, что все числа, начиная с некоторого, можно представить в виде 2229013x + 3875743y + 2390041z, где x, y и z - целые неотрицательные числа. Чему равно наибольшее натуральное число, которое нельзя представить в таком виде?

Задачу решили: 46
всего попыток: 55
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим десятичную запись числа √2=1.41421356237... Число 421 является первым трехзначным простым числом, встречающимся в этой записи. Число 135623 - первым шестизначным простым числом. Чему равно первое 12-значное простое число, встречающееся в десятичной записи числа √2?

Задачу решили: 30
всего попыток: 70
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сумму Sn=1·31+2·32+3·33+4·34+5·35+...+n·3n. Требуется найти последние девять цифр числа S12345678987654321.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 18.05.09 13:54
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Michalych (Дмитрий Феломешкин)

Известно, что tg(1) представляется следующей непериодической цепной дробью:

tg(1) = [ 1, 1, 1, 3, 1, 5, ... , 1, 2*k - 1, ... ]

Если рассмотреть цепную дробь только с несколькими первыми, значениями получим приближение tg(1).

Для первого значения приближение tg(1) ~ 1.

Для первых двух: tg(1) ~ 1 + 1/1 = 2.

Трёх: 1 + 1 / ( 1 + 1 / 1 ) = 3/2.

Четырех: 1 + 1 / ( 1 + 1 / ( 1 + 1 / 3 )) = 11/7.

Найдите 2009-ое и 2010-ое приближения цепными дробями tg(1). Вычислите разность этих приближений и запишите в ответ сумму цифр знаменателя этой разности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.