img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 63
всего попыток: 85
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Найти наименьшее натуральное число, которое при делении на 123 дает остаток 12, при делении на 239 дает остаток 57, при делении на 361 - остаток 239, при делении на 566 - остаток 361, а при делении на 1237 - остаток 566.

Задачу решили: 12
всего попыток: 46
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Известно, что все числа, начиная с некоторого, можно представить в виде 2229013x + 3875743y + 2390041z, где x, y и z - целые неотрицательные числа. Чему равно наибольшее натуральное число, которое нельзя представить в таком виде?

Задачу решили: 46
всего попыток: 55
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим десятичную запись числа √2=1.41421356237... Число 421 является первым трехзначным простым числом, встречающимся в этой записи. Число 135623 - первым шестизначным простым числом. Чему равно первое 12-значное простое число, встречающееся в десятичной записи числа √2?

Задачу решили: 30
всего попыток: 70
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сумму Sn=1·31+2·32+3·33+4·34+5·35+...+n·3n. Требуется найти последние девять цифр числа S12345678987654321.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 18.05.09 13:54
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Michalych (Дмитрий Феломешкин)

Известно, что tg(1) представляется следующей непериодической цепной дробью:

tg(1) = [ 1, 1, 1, 3, 1, 5, ... , 1, 2*k - 1, ... ]

Если рассмотреть цепную дробь только с несколькими первыми, значениями получим приближение tg(1).

Для первого значения приближение tg(1) ~ 1.

Для первых двух: tg(1) ~ 1 + 1/1 = 2.

Трёх: 1 + 1 / ( 1 + 1 / 1 ) = 3/2.

Четырех: 1 + 1 / ( 1 + 1 / ( 1 + 1 / 3 )) = 11/7.

Найдите 2009-ое и 2010-ое приближения цепными дробями tg(1). Вычислите разность этих приближений и запишите в ответ сумму цифр знаменателя этой разности.

Задачу решили: 26
всего попыток: 36
Задача опубликована: 21.05.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Если мы возьмем все правильные несократимые дроби с d ≤ 8 и выпишем их в порядке возрастания, то получим следующую последовательность:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
Сумма знаменателей этих дробей:
8+7+6+5+4+7+3+8+5+7+2+7+5+8+3+7+4+5+6+7+8
равна 122.
Если выписать таким же образом правильные несократимые дроби с d ≤ 1 000 000, то какой будет сумма их знаменателей?

Задачу решили: 23
всего попыток: 33
Задача опубликована: 21.05.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Если мы возьмем все правильные несократимые дроби с d ≤ 8 и выпишем их в порядке возрастания, то получим следующую последовательность:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
Между 1/3 и 1/2 расположены 3 дроби: 3/8, 2/5, 3/7, а сумма их числителей равна 8.
Если выписать таким же образом все правильные несократимые дроби с 10 000, то какова будет сумма числителей дробей, лежащих между 1/3 и 1/2?

Задачу решили: 86
всего попыток: 140
Задача опубликована: 25.05.09 18:17
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти наименьшее число n, такое что n! имеет в конце 1000000 нулей.

Задачу решили: 20
всего попыток: 62
Задача опубликована: 25.05.09 18:55
Прислал: pikachu img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Пусть A1=2009, ..., Ak+1=2009Ak.
Найти последние 40 цифр числа A2009.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.