Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
172
За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски?
Задачу решили:
8
всего попыток:
42
Группу из 30 студентов нужно разбить на две команды, так чтобы в первой команде было больше студентов, чем во второй, но не более чем в полтора раза. При этом в каждой группе должны оказаться знакомые друг с другом студенты. Знакомство задается матрицей с элементами Aij (1≤i,j≤30), в которой Aij=Aji=1, если студенты с номерами i и j знакомы, и Aij=Aji=0 - если не знакомы. Также известно, что если i+j и i*j одновременно делятся на 3, то Aij=1, остальные элементы равны нулю. Сколько возможно разбиений на команды?
Задачу решили:
12
всего попыток:
13
Игра проводится по следующим правилам. Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля. Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.
Задачу решили:
6
всего попыток:
6
Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
С другой стороны, 1+i не является делителем 5, поскольку . Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Для делителей с положительной вещественной частью . Для 1 ≤ n ≤ 105, Σ s(n)=17924657155. Найдите Σ s(n) для 1 ≤ n≤ 15·107.
Задачу решили:
3
всего попыток:
9
Возьмем вещественное число x.
Задачу решили:
9
всего попыток:
16
Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет. P(5) = 1/1 Найдите сумму всех m, для которых P(m)=1/7777.
Задачу решили:
5
всего попыток:
5
На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Задачу решили:
5
всего попыток:
8
Функция бланманже определена на промежутке [0, 1] следующим образом: Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Задачу решили:
5
всего попыток:
5
Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Задачу решили:
10
всего попыток:
16
Решите уравнение относительно r: Результат округлите до целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|