img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 172
Задача опубликована: 13.07.09 09:37
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 500
Темы: алгоритмыimg
Лучшее решение: Kruger

За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски? 

Задачу решили: 8
всего попыток: 42
Задача опубликована: 23.08.09 13:16
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Группу из 30 студентов нужно разбить на две команды, так чтобы в первой команде было больше студентов, чем во второй, но не более чем в полтора раза. При этом в каждой группе должны оказаться знакомые друг с другом студенты. Знакомство задается матрицей с элементами Aij (1≤i,j≤30), в которой Aij=Aji=1,  если студенты с номерами i и j знакомы, и Aij=Aji=0 - если не знакомы. Также известно, что если i+j и i*j одновременно делятся на 3, то Aij=1, остальные элементы равны нулю. Сколько возможно разбиений на команды?

Задачу решили: 12
всего попыток: 13
Задача опубликована: 23.11.09 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Игра проводится по следующим правилам.

Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля.

Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.

Задачу решили: 6
всего попыток: 6
Задача опубликована: 05.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим


Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.

С другой стороны, 1+i не является делителем 5, поскольку .

Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.

n Гауссовы делители с положительной
вещественной частью
Сумма этих делителей
s(n)
1 1 1
2 1, 1+i, 1-i, 2 5
3 1, 3 4
4 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 13
5 1, 1+2i, 1-2i, 2+i, 2-i, 5 12

Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 18.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство
4t = 2t + k,
а числа 4t и 2t были целыми.
Наименьшее такое k равно двум:
41 = 21 + 2,
а следующее равно шести:
41,5849625... = 21,5849625... + 6.

Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет.
Обозначим через P(m) долю таких k ≤ m, для которых  t – целое. Например, P(6) = 1/2. Ниже приведено несколько значений P(m):

   P(5) = 1/1
   P(10) = 1/2
   P(15) = 2/3
   P(20) = 1/2
   P(25) = 1/2
   P(30) = 2/5
   ...
   P(180) = 1/4
   P(185) = 3/13

Найдите сумму всех m, для которых P(m)=1/7777.

Задачу решили: 5
всего попыток: 5
Задача опубликована: 02.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Когда звенит колокольчик, блохи одновременно прыгают.
Блоха, сидящая в углу доски, приземляется на одну из двух соседних клеток с равной вероятностью 1/3 и с такою же вероятностью 1/3 возвращается на прежнее место.
Блоха, сидящая у края доски, приземляется на одну из трех соседних клеток с равной вероятностью 1/4 и с такою же вероятностью 1/4 возвращается на прежнее место.
Блоха, сидящая во внутренней части доски, приземляется на одну из четырех соседних клеток с равной вероятностью 1/5 и с такою же вероятностью 1/5 возвращается на прежнее место.
Найдите математическое ожидание количества незанятых блохами клеток после пятидесяти звонков. Результат умножьте на миллион и округлите до ближайшего целого. 

Задачу решили: 5
всего попыток: 8
Задача опубликована: 11.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Функция бланманже определена на промежутке [0, 1] следующим образом:
,
Где s(x) – расстояние между x и ближайшим к нему целым числом.
График функции бланманже представлен на рисунке. Область под кривой, закрашена розовым. Ее площадь равна ½.

Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Найдите площадь той части круга C, которая лежит под графиком  функции бланманже.
Результат умножьте на 107 и округлите до целого.

Задачу решили: 5
всего попыток: 5
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Аналогично, обозначим через ups(n) верхний простой квадратный корень из n, т.е. наименьшее простое число, большее или раное √n.
Например, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.
Назовем число n≥4 полуделимым, если оно делится на lps(n) или на  ups(n), но не кратно обоим этим числам одновременно. Первые три полуделимых числа – это 8, 10 и 12. Число 15 не является полуделимым, поскольку  оно кратно и lps(15)=3, и ups(15)=5. Сумма первых трех полуделимых чисел равна 30. Сумма первых 92 полуделимых чисел равна 34825.
Найдите сумму первых 3711717 полуделимых чисел.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 19.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

 

Решите уравнение относительно r:

Результат округлите до целого.

 

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.