img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 19
Задача опубликована: 14.12.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Радикалом числа n, rad(n), называют произведение различных простых делителей числа n. Например 1008 = 24×32×7, следовательно rad(1008) = 2×3×7 = 42.

Если мы вычислим все rad(n) для 1 ≤ n ≤10, отсортируем их по значению rad(n), а затем по значению n (при равных rad(n)), то получим:

До сортировки
 
После сортировки

n

rad(n)


n

rad(n)

k
1
1
 
1
1
1
2
2
 
2
2
2
3
3
 
4
2
3
4
2
 
8
2
4
5
5
 
3
3
5
6
6
 
9
3
6
7
7
 
5
5
7
8
2
 
6
6
8
9
3
 
7
7
9
10
10
 
10
10
10

Обозначим через E(k) k-ый элемент в отсортированной колонке n, например, E(4) = 8 и E(6) = 9.

Если rad(n) отсортирован для 1 ≤ n ≤ 100000, найдите сумму всех E(k) для 1 ≤ k ≤ 50000.

Задачу решили: 7
всего попыток: 10
Задача опубликована: 25.01.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.
Пусть n-натуральное число, взаимно простое с 10. Можно доказать, что всегда существует число k, для которого R(k) кратно n. Обозначим через A(n) минимальное такое число, например, A(7) = 6 и A(41) = 5.
Для любого простого p > 5 число p−1 кратно A(p). Например, при p = 41 A(41) = 5 и 41-1 делится на 5.
Однако изредка попадаются и составные числа, обладающие этим свойством. Первые пять из них: 91, 259, 451, 481 и 703.
Найдите n - пятидесятое взаимно простое с 10 составное число, для которого n−1 делится на A(n).

Задачу решили: 20
всего попыток: 40
Задача опубликована: 15.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sveark (Янус Невструев)

Два студента механико-математического факультета развлекаются такой игрой: они записывают в ячейки матрицы 3х3 числа от 1 до 9, первый студент записывает в центральную (второй столбец и вторая строка) ячейку число x, затем второй может в любую ячейку записать второе число отличное от первого, затем первый студент может записать в любую оставшуюся ячейку новое число несовпадающее с предыдущими и так далее, пока все ячейки не будут заполнены различными числами от 1 до 9. Побеждает первый игрок, если определитель получившейся матрицы положителен, в противном случае побеждает второй игрок. При каком минимальном числе x вероятность победы первого игрока максимальна.

(Идею этой задачи подсказал замечательный математик, профессор МГУ им. М.В. Ломоносова - А.В. Михалев. В пору его обучения так развлекались студенты. Хорошие были времена и хорошие игры :-))
Задачу решили: 11
всего попыток: 14
Задача опубликована: 22.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим последовательные простые числа p1 = 37 и p2 = 41. Можно убедиться, что число S = 3441, является наименьшим числом, обладающим следующими свойствами:

1) S кратно p1, и

2) последние цифры S образуют число p2.

Для любых последовательных простых чисел p2 >p1> 5, можно найти наименьшее натуральное S, обладающее свойствами 1 и 2.

Найдите ∑S для всех пар последовательных простых чисел при 7 ≤ p1 ≤ 1000000.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 03.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В лазерной физике используют системы зеркал, которые действуют как линии задержки для проходящего лазерного луча. Луч входит в систему, многократно отражается от зеркал и, в конце концов, выходит обратно.

Мы рассмотрим такую линию задержки, имеющую форму эллипса с уравнением 4x2 + y2= 100.

В верхней части эллипса сделано отверстие −0.01 ≤ x ≤ +0.01 для входа и выхода луча.

В нашей задаче луч направляется из точки с координатами (0,0;10,1) внутрь эллипса, где испытывает первое отражение в точке (1,4;-9,6),

Луч отражается по обычному закону "угол падения равен углу отражения". Иначе говоря, падающий и отраженный луч образуют с нормалью в точке падения равные углы.

На рисунке слева красной линией показана траектория луча к первым двум точкам отражения. Синим обозначена касательная к эллипсу в первой точке отражения. Наклон касательной в точке эллипса с координатами (x,y) можно найти по формуле: m = −4x/y. Нормаль перпендикулярна касательной в точке падения.

На анимированной картинке справа показаны первые 10 отражений луча.

Какой длины путь проделает луч внутри эллиптической системы задержки? Результат округлите до целого.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 10.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке.

Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313.

Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи.

А сколько обратимых чисел не превышает 1021?

Задачу решили: 5
всего попыток: 7
Задача опубликована: 24.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена решетка размером 3x2, состоящая из вертикальных, горизонтальных и наклонных отрезков. Для данной решетка существует 37 прямоугольников, вершины которых лежат на узлах решетки.

Есть пять решеток меньшего размера: 1x1, 2x1, 3x1, 1x2 и 2x2 (каждое из измерений этих решеток не превосходит соответствующего измерения нашей решетки 3x2). Подсчитаем, сколько прямоугольников можно разместить на узлах этих решеток:

1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18

Сложив все эти числа, получим, что 1+4+8+4+18+37=72 различных прямоугольников можно разместить на узлах решеток 3x2 и меньших.

Сколько различных прямоугольников можно разместить на узлах решеток 300x200 и меньших?

 

Задачу решили: 10
всего попыток: 14
Задача опубликована: 31.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mogikanin (Максим Мирошников)

Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:

         1        
      1
  1
     
    1
   2   1
   
   1   3
   3   1
 
 1    4    6    4   1

Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Сколько чисел в первом миллиарде строк будут кратны пяти?

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 14.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
В примере на рисунке красным цветом выделен такой максимальный треугольник. Сумма составляющих его чисел равна 42.


 
Теперь мы хотим решить эту задачу для треугольника побольше. Наш треугольник будет состоять из 1000 строк. Чтобы его заполнить, сгенерируем 500500 псевдослучайных чисел sk в диапазоне от -219 до 219, используя следующий линейно-конгруэнтный генератор псевдослучайных чисел:
t := 0
для k от 1 до 500500:
    t := (615949*t + 797807) (mod 220)
    sk := t-219

Тогда получим: s1 = 273519, s2 = -153582, s3 = 450905,  а исходный треугольник будет выглядеть следующим образом

 s1
ss
3
sss
6
ssss
10
...

Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Найдите наибольшую сумму треугольника, для всех треугольников, которые можно построить указанным способом.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.