Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
2
Мальчику подарили развивающую игру-пазл "числовая змейка", состоящую из 40 фигурных элементов, которые можно собирать цепочкой один за другим и только в определенной последовательности. Элементы перенумерованы в соответствии с этой последовательностью числами от 1 до 40. Каждый вечер папе приходится собирать элементы, разбросанные по полу в детской. Он подбирает их по одному случайным образом и сразу ставит на нужное место. При этом они образуют несколько готовых отрезков из нескольких идущих подряд элементов, должным образом соединенных между собой. Понятно, что сначала, до того как папа начинает выкладывать змейку, таких отрезков нет, когда он кладет первый элемент, получается один отрезок, состоящий из единственного элемента, а в конце работы остается также один отрезок, состоящий из всех 40 элементов. По ходу дела количество готовых отрезков может увеличиваться и уменьшаться, достигая в какой-то момент максимума. Вот пример его работы:
Обозначим через M максимальное количество готовых отрезков, которое достигалось в процессе сборки. В таблице ниже приведено количество вариантов сборки, при которых наблюдаются максимальные числа отрезков M для змейки, состоящей из 10 элементов.
Как видно, наиболее вероятное значение M равно 3, и оно реализуется 1815264 различными способами, а 181526 — это первые шесть значащих цифр данного числа.
Задачу решили:
2
всего попыток:
8
Высота над уровнем моря на острове Буян определяется формулой , Примечание. Для вашего удобства формула высоты записана в более удобном для программирования виде: h=( 5000-0.005*(x*x+y*y+x*y)+12.5*(x+y) ) * exp( -abs(0.000001*(x*x+y*y)-0.0015*(x+y)+0.7) )
Задачу решили:
3
всего попыток:
4
Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Задачу решили:
4
всего попыток:
10
Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
Задачу решили:
4
всего попыток:
6
Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью. Перед тем, как прыгнуть, лягушка квакает. Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N". Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P". Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.
Задачу решили:
2
всего попыток:
3
Сферическим треугольником называют фигуру на поверхности сферы, ограниченную дугами больших кругов, имеющими попарно общие концы.
Пусть C(r) – сфера с центром в начале координат (0,0,0) и радиусом r. Пусть Z(r) – множество точек сферы C(r) с целыми координатами. Пусть T(r) – множество сферических треугольников с вершинами, принадлежащими Z(r). Вырожденные сферические треугольники с вершинами, принадлежащими одному большому кругу, не включаются в T(r). Пусть A(r) – наименьшая площадь треугольника из T(r), а B(r) =(4πr2)/A(r) – величина, обратная доле площади сферы, которую занимает наименьший сферический треугольник. Например, A(14) ≈3,294040, а B(14) ≈ 748. Найдите максимальное значение B(r) для натуральных r, не превышающих 50. Результат округлите до ближайшего целого.
Задачу решили:
1
всего попыток:
1
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108.
Задачу решили:
2
всего попыток:
3
Для каждого натурального n определим функцию f(n) как количество хорд параболы y=x², концы которых имеют целочисленные координаты, и квадрат длины которых равен n. Например, f(4)=1, f(2)=2, f(3)=0 и f(50)=4. На рисунке изображены 4 хорды с целочисленными координатами концов и квадратом длины равным 50. Найдите наименьшее число n, для которого f(n)=8.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|