Лента событий:
TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
37
Дан список слов в приложении. Среди них есть некоторые слова-анаграммы. То есть пары слов, отличающиеся только порядком букв. Такие как СОСНА и НАСОС. Оказывается, что при некоторой подстановке букв цифрами (одинаковым буквам соответствуют одинаковые цифры, разным - разные), слова пары могут одновременно превратиться в пентагональные числа (представимы как n(3n-1)/2). Найти среди всех таких слов и соответствующих им чисел, наибольшее число.
Задачу решили:
9
всего попыток:
12
Заполним полоску из пяти клеток, используя черные квадраты и цветные прямоугольники: красные прямоугольники из двух клеток, зеленые прямоугольники из трех клеток, синие – из четырех и желтые из пяти клеток. Как видно из рисунка, это можно сделать шестнадцатью способами.
Сколько есть способов заполнения полоски из 50 клеток?
Задачу решили:
8
всего попыток:
11
Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке. Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313. Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи. А сколько обратимых чисел не превышает 1021?
Задачу решили:
5
всего попыток:
13
Типография каждый день выполняет 16 заказов. Для каждого заказа необходим лист специальной бумаги формата A5.
Задачу решили:
4
всего попыток:
4
На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое. Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров. Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар. Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех). То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n. Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.
Задачу решили:
6
всего попыток:
7
Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:
С учетом различных ориентаций можно насчитать шесть видов тримино: Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом: При этом симметричные покрытия мы считали различными. Сколько существует подобного рода покрытий для прямоугольника 8 х 15?
Задачу решили:
7
всего попыток:
15
В шестнадцатеричной системе счисления числа представляют с помощью 16 цифр: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F Шестнадцатеричная запись AF соответствует десятичному числу 10x16+15=175. Ответ представьте в шестнадцатеричной системе счисления.
((A,B,C,D,E и F в верхнем регистре, без каких-либо дополнительных символов и нолей слева, например, 1A3F - правильный формат, а 1a3f, 0x1a3f, $1A3F, #1A3F и 0000001A3F - неправильно))
Задачу решили:
9
всего попыток:
16
Игроку выдается 9 карт и он упорядочивает их по мастям в порядке Пики, Трефы, Бубны, Червы, а внутри масти по старшиству 2, 3,..., 10, В, Д, К, Т. Комбинация называется неубывающей, если младшая карта в следующей масти, не ниже старшей карт в предыдущей масти. Найдите количество неубывающих комбинаций из 9 карт.
Задачу решили:
38
всего попыток:
47
Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что никакие 2 ферзя не бьют друг друга?
Задачу решили:
6
всего попыток:
8
Игрок бросает пять шестигранных костей (т.е. кубиков, грани которых пронумерованы от 1 до 6), а затем подсчитывает сумму трех наибольших выпавших значений. D1,D2,D3,D4,D5 = 4,3,6,3,5 Существует ровно 1111 вариантов для пяти шестигранных костей, когда три наибольших выпавших значения дают в сумме 15. А сколько будет вариантов для 18 двенадцатигранных костей (т.е. додекаэдров, грани которых пронумерованы от 1 до 12), когда 10 наибольших выпавших значений в сумме дают полный квадрат?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|