img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 14
всего попыток: 28
Задача опубликована: 04.07.09 09:02
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Точки P(x1, y1) и Q(x2, y2) с целочисленными координатами вместе с точкой начала координат O(0, 0) образуют треугольник OPQ.

Для 0 ≤ x1, y1, x2, y2 ≤ 2 всего 12 треугольников с углом 45 градусов. Вот координаты соответствующих им точек P и Q:

(0, 1) (1, 0)
(0, 1) (1, 1)
(0, 1) (2, 2)
(0, 2) (1, 1)
(0, 2) (2, 0)
(0, 2) (2, 2)
(1, 0) (1, 1)
(1, 0) (2, 2)
(1, 1) (2, 0)
(1, 2) (2, 2)
(2, 0) (2, 2)
(2, 1) (2, 2)

Треугольники где изменен только порядок точек P и Q, считаются одинаковыми.

Сколько различных треугольников с углом 45 градусов, если координаты точек находятся в пределах: 0 ≤ x1, y1, x2, y2 ≤ 100?

Задачу решили: 21
всего попыток: 33
Задача опубликована: 21.08.09 17:48
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим два треугольника:
A(-340,495), B(-153,-910), C(835,-947)

X(-175,41), Y(-421,-714), Z(574,-645)
Легко проверить, что треугольник ABC содержит начало координат, а треугольник XYZ - нет.

На плоскости заданы 20 точек. Их координаты приведены в таблице:

X 237 -507 237 -90 723 606 -70 607 230 -763 270 2 -370 -37 72 347 863 194 875 391
Y 601 -254 478 965 514 -648 365 -435 -67 -650 245 845 900 -457 -522 705 725 720 -642 990

Сколько треугольников с вершинами в данных точках содержат начало координат?

Задачу решили: 13
всего попыток: 34
Задача опубликована: 19.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На плоскости нарисована пятиконечная звезда  с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 03.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В лазерной физике используют системы зеркал, которые действуют как линии задержки для проходящего лазерного луча. Луч входит в систему, многократно отражается от зеркал и, в конце концов, выходит обратно.

Мы рассмотрим такую линию задержки, имеющую форму эллипса с уравнением 4x2 + y2= 100.

В верхней части эллипса сделано отверстие −0.01 ≤ x ≤ +0.01 для входа и выхода луча.

В нашей задаче луч направляется из точки с координатами (0,0;10,1) внутрь эллипса, где испытывает первое отражение в точке (1,4;-9,6),

Луч отражается по обычному закону "угол падения равен углу отражения". Иначе говоря, падающий и отраженный луч образуют с нормалью в точке падения равные углы.

На рисунке слева красной линией показана траектория луча к первым двум точкам отражения. Синим обозначена касательная к эллипсу в первой точке отражения. Наклон касательной в точке эллипса с координатами (x,y) можно найти по формуле: m = −4x/y. Нормаль перпендикулярна касательной в точке падения.

На анимированной картинке справа показаны первые 10 отражений луча.

Какой длины путь проделает луч внутри эллиптической системы задержки? Результат округлите до целого.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 24.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена решетка размером 3x2, состоящая из вертикальных, горизонтальных и наклонных отрезков. Для данной решетка существует 37 прямоугольников, вершины которых лежат на узлах решетки.

Есть пять решеток меньшего размера: 1x1, 2x1, 3x1, 1x2 и 2x2 (каждое из измерений этих решеток не превосходит соответствующего измерения нашей решетки 3x2). Подсчитаем, сколько прямоугольников можно разместить на узлах этих решеток:

1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18

Сложив все эти числа, получим, что 1+4+8+4+18+37=72 различных прямоугольников можно разместить на узлах решеток 3x2 и меньших.

Сколько различных прямоугольников можно разместить на узлах решеток 300x200 и меньших?

 

Задачу решили: 31
всего попыток: 49
Задача опубликована: 19.07.10 08:00
Прислал: admin img
Источник: Всеукраинская олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 30.08.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:

 

С учетом различных ориентаций можно насчитать шесть видов тримино:

Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом:

При этом симметричные покрытия мы считали различными.

Сколько существует подобного рода покрытий для прямоугольника 8 х 15?

Задачу решили: 7
всего попыток: 9
Задача опубликована: 13.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:


 
В треугольнике размера 1 можно найти 16 треугольников различной величины, формы, положения и ориентации.
Используя треугольники размера 1 в качестве элементов, можно составить из них треугольники большего размера, такие как треугольник размера 2 на рисунке. В треугольнике размера 2 можно насчитать 104 треугольника различной величины, формы, положения и ориентации.
Легко видеть, что треугольник размера 2 состоит из четырех треугольников размера 1, треугольник размера 3 – из 9 треугольников размера 1, а треугольник размера n - из n2 треугольников размера 1.
Обозначим через T(n) количество треугольников различной величины, формы, положения и ориентации, которые можно найти в треугольнике размера n.
Получим:
T(1) = 16,
T(2) = 104


Найдите Т(50).

Задачу решили: 5
всего попыток: 25
Задача опубликована: 27.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек.

Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков.

Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим  три отрезка:

  • отрезок L1 с концами (27, 44) и (12, 32)
  • отрезок L2 с концами (46, 53) и (17, 62)
  • отрезок L3 с концами (46, 70) и (22, 40)

Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения.

Будем теперь последовательно строить отрезки и подсчитывать их истинные точки пересечения. Чтобы построить n отрезков, нам нужно 4n координат их концов. Будем генерировать эти числа случайным образом с помощью алгоритма Блюма - Блюма – Шуба:

s0 = 290797
sn+1 = sn × sn (mod 50515093)
tn = sn (mod 200)

Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
(t1, t2) и (t3, t4)
Четыре первых числа, сгенерированные нашим алгоритмом, будут t1=127, t2=144, t3=112, t4=132, и концы первого отрезка будут иметь координаты (127,144) и (112,132).

Чтобы количество различных истинных точек пересечения превысило одну тысячу, нужно сгенерировать ровно сто отрезков: действительно, первые 99 отрезков будут иметь 992 различных истинных точек пересечения, а первые 100 отрезков – уже 1003.
Сколько необходимо сгенерировать отрезков, чтобы количество различных истинных точек пересечения превысило миллион?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.