img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 86
всего попыток: 248
Задача опубликована: 22.03.09 16:43
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Составьте из цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 все возможные различные числа, начиная с 0, при этом в каждом числе одна цифра должна использоваться не более одного раза, при этом записи вида 012 и 12 означают одно и тоже число. Выпишите полученные числа в порядке возрастания.

Какое число окажется на миллионном месте?

Задачу решили: 43
всего попыток: 127
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Игра Ним - игра для двух человек. Правила игры очень просты.
Есть несколько кучек камней. Двое по очереди делают ходы. Ход заключается в том, что игрок выбирает непустую кучку и берет из нее любое число камней (ненулевое). Проигрывает тот, кто не может сделать ход. Если изначально в игре три кучки: 10, 15, 20, то при правильной игре выиграет первый игрок, а если 10, 20 и 30, то второй. Найдите минимальное n для которого в игре "10 20 30 40 50 60 70 80 90 n" выиграет второй.

Это открытая задача (*?*)
Задача опубликована: 30.05.09 10:48
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 500
Лучшее решение: emm76

Строку натуральных чисел (1, 3, 5, 2, 4) попробуем упорядочить при помощи специальных перестановок: разделим строку на 2 части (1, 3, 5) и (2, 4), первую строку запишем в обратном порядке и присоединим ко второй, в результате получим (5, 3, 1, 2, 4). Далее действуем также - разбиваем строку на 2 любые части (любая часть может быть пустой), первую часть записываем в обратном порядке и просоединяем ко второй. При помощи перестановок:

(5, 3, 1, 2, 4) = (5, 3, 1, 2, 4) + () -> (4, 2, 1, 3, 5)

(4, 2, 1, 3, 5) = (4, 2, 1, 3) + (5) -> (3, 1, 2, 4, 5)

(3, 1, 2, 4, 5) = (3, 1, 2) + (4, 5) -> (2, 1, 3, 4, 5)

(2, 1, 3, 4, 5) = (2, 1) + (3, 4, 5) -> (1, 2, 3, 4, 5)

За какое минимальное количество перестановок гарантированно можно упорядочить строку чисел от 1 до 100?  

Задачу решили: 34
всего попыток: 53
Задача опубликована: 31.05.09 07:47
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами:

10 + 22
11 + 21
12 + 20
13 + 19
14 + 18
15 + 17
16 + 16
10 + 10 + 12
10 + 11 + 11

А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?

Задачу решили: 0
всего попыток: 3
Задача опубликована: 17.07.09 10:13
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа. 

Задачу решили: 11
всего попыток: 37
Задача опубликована: 04.08.09 12:05
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 300
Лучшее решение: Anton_Lunyov

Дан список слов в приложении. Среди них есть некоторые слова-анаграммы. То есть пары слов, отличающиеся только порядком букв. Такие как СОСНА и НАСОС. Оказывается, что при некоторой подстановке букв цифрами (одинаковым буквам соответствуют одинаковые цифры, разным - разные), слова пары могут одновременно превратиться в пентагональные числа (представимы как n(3n-1)/2). Найти среди всех таких слов и соответствующих им чисел, наибольшее число.

Задачу решили: 61
всего попыток: 115
Задача опубликована: 14.08.09 14:29
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: shev (Vya Shevelev)

В одной стране, когда население достигло 1 миллиарда, правитель выдал всем жителям порядковые номера от 1 и до 109. В этой стране счастливым считается число 888, поэтому сначала осчастливили тех, у кого номер оказался кратным 888. Затем счастливчиков упорядочили в порядке возрастания номеров и отобрали тех, кто оказался на местах кратных 888. Эту процедуру продолжали до тех пор, пока участников стало меньше 888. Их и объявили суперсчастливчиками. Чему равна сумма изначальных номеров суперсчастливчиков?

Задачу решили: 12
всего попыток: 14
Задача опубликована: 12.10.09 12:40
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На рисунке изображена прямоугольная полоска из восьми выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее трех клеток, а черные – не менее двух. Как видно из рисунка, полоску из восьми клеток можно раскрасить таким образом четырнадцатью способами.

 


Сколькими способами можно раскрасить полоску из 50 клеток, следуя тем же правилам?

Задачу решили: 9
всего попыток: 13
Задача опубликована: 22.10.09 08:34
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В полоске, состоящей из пяти черных квадратов, будем заменять несколько идущих подряд клеток на прямоугольники разных цветов. При этом прямоугольники 2 × 1 будут красного цвета, 3 × 1 - зеленого, 4 × 1 - синего, а прямоугольник длиной 5 клеток окрасим в желтый цвет.

Используя красные прямоугольники, это можно сделать ровно семью способами:

 

Для зеленых прямоугольников есть три варианта:

 

Синие прямоугольники можно поставить только двумя способами:

А для желтых прямоугольников возможен один единственный вариант:

Итак, используя цветные прямоугольники какого-либо одного из имеющихся цветов, можно заменить часть черных квадратов в полоске длиной 5 единиц 7 + 3 + 2 + 1 = 13 способами.

Сколькими способами можно заменить цветными прямоугольниками часть черных квадратов в полоске длиной 50 единиц, если можно использовать цветные полоски только одного из имеющихся четырех цветов, и использован хотя бы один цветной прямоугольник? ("Смешивать" цвета нельзя, т.е. как и в примере, каждая полоска может содержать лишь один цвет, не считая черного).

Задачу решили: 9
всего попыток: 12
Задача опубликована: 26.10.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: emm76

Заполним полоску из пяти клеток, используя черные квадраты и цветные прямоугольники: красные прямоугольники из двух клеток, зеленые прямоугольники из трех клеток, синие – из четырех и желтые из пяти клеток. Как видно из рисунка, это можно сделать шестнадцатью способами.

Сколько есть способов заполнения полоски из 50 клеток?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.