Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
5
На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Задачу решили:
5
всего попыток:
6
При строительстве стены используются кирпичи размером 2×1 и 3×1 (горизонтальный размер × вертикальный размер). Чтобы в стене не образовалась трещина, стыки между кирпичами не должны располагаться непосредственно друг над другом.
Задачу решили:
5
всего попыток:
8
Функция бланманже определена на промежутке [0, 1] следующим образом: Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Задачу решили:
5
всего попыток:
5
Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Задачу решили:
10
всего попыток:
16
Решите уравнение относительно r: Результат округлите до целого.
Задачу решили:
6
всего попыток:
8
Игрок бросает пять шестигранных костей (т.е. кубиков, грани которых пронумерованы от 1 до 6), а затем подсчитывает сумму трех наибольших выпавших значений. D1,D2,D3,D4,D5 = 4,3,6,3,5 Существует ровно 1111 вариантов для пяти шестигранных костей, когда три наибольших выпавших значения дают в сумме 15. А сколько будет вариантов для 18 двенадцатигранных костей (т.е. додекаэдров, грани которых пронумерованы от 1 до 12), когда 10 наибольших выпавших значений в сумме дают полный квадрат?
Задачу решили:
8
всего попыток:
16
Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это 1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15. Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3. Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.
Задачу решили:
5
всего попыток:
6
Вы, вероятно, знаете игру в 15 (пятнашки). На этот раз мы будем использовать не нумерованные костяшки, а цветные – семь красных и восемь синих. При этом есть ровно два способа, которыми можно достичь положения (E) за 5 шагов, а именно, двигая костяшки последовательно
Назовем кратностью положения количество способов, которыми можно достичь этого положения за минимальное количество шагов. Мы видели, что кратность положения (E) равна 2.
Задачу решили:
3
всего попыток:
5
Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11. R(d)= φ(d)/(d – 1), где φ – функция Эйлера. Теперь определим коэффициент сократимости C(d): C(d)= (d-φ(d))/(d – 1 ) C(p)=1/(p-1) Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Задачу решили:
4
всего попыток:
8
Дано множество простых чисел, не превышающих 5000:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|