Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
13
всего попыток:
26
Попытаемся разложить число 5 в сумму простых: 5 = 5 5 = 2 + 3 5 = 3 + 2 Назовем количеством композиций числа n из простых чисел - количество всех упорядоченных последовательностей простых чисел, в сумме составляющих n. Количество композиций для n = 5: 3, в примере последние две композиции различны. Назовем количеством разбиений числа n на простые - количество всех неупорядоченных множеств из простых чисел в сумме дающих n. Количество разбиений для n = 5: 2, в примере последние два разбиения считаются одинаковыми. Найдите минимальное n для которого отношение числа композиций к числу разбиений больше одного миллиарда. В ответе запишите разность числа композиций и разбиений для этого n.
Задачу решили:
17
всего попыток:
35
Для каждого натурального n можно найти число раскладываний камней на кучки. Например, для n=5 количество различных раскладываний 7: ООООО ОООО О ООО ОО ООО О О ОО ОО О ОО О О О О О О О О Найдите минимальное количество камней, для которого сумма цифр количества различных раскладываний больше 1000.
Задачу решили:
20
всего попыток:
90
Необходимо разложить 8290 кафельных плиток размера 1x1 на пол размером 68x122, так чтобы в каждой строке и в каждом столбце было четное количество плиток, при этом на одно место можно положить не более одной плитки. Сколько существует способов такой укладки?
Задачу решили:
44
всего попыток:
65
Известно, что если квадратный корень из целого числа не является целым числом, то он не будет и рациональным. Поэтому соответствующая ему бесконечная десятичная дробь не будет периодической. Рассмотрим десятичное разложение квадратного корня из двух: Найдите сумму тысячи первых десятичных знаков корня квадратного из трех.
Задачу решили:
25
всего попыток:
99
Пусть S < 109. Найти наибольшее значение S, для которого существует максимальное количество прямоугольников с целочисленными сторонами и площадью равной S.
Задачу решили:
47
всего попыток:
115
Номера кредитной карты состоят из 16 цифр (все цифры не могут быть нулями одновременнно). Номер является счастливым, если сумма первых восьми цифр равна сумме последних восьми. Сколько всего таких счастливых номеров?
Задачу решили:
11
всего попыток:
24
На каждой из 6 граней кубика изображена одна из цифр от 0 до 9. Так же и на другом кубе. Ставя два кубика рядом можно составить множество двузначных чисел. Например число 64 будет составлено так:
Подобрав цифры на гранях, можно отобразить все числа которые можно получить суммой двух кубов меньшие сотни ( n = a3 + b3, n < 100, a и b - натуральные). Эти числа: 02, 09, 16, 28, 35, 54, 65, 72, 91. Например, с помощью наборов {5, 4, 3, 2, 1, 0} и {9, 8, 5, 4, 3, 1} могут быть выложены все необходимые числа. При этом надо учесть, что цифры 6 и 9 выглядят одинаково и могут использоваться друг за друга, хотя наборы с этими цифрами считаются различными. Тогда как один и тот же набор цифр расположенный на гранях кубика иным образом считается тем же набором. То есть, {1, 2, 3, 4, 5, 6} и {3, 6, 4, 1, 2, 5} - одинаковые наборы; Сколько различных пар кубиков могут быть сложены во все числа представимые суммой пары кубов?
Задачу решили:
23
всего попыток:
33
Составим последовательность чисел следующим образом: Пусть первое число n, а каждое следующее - сумма квадратов цифр предыдущего числа в шестнадцатеричной системе отсчета. Оказывается, независимо от начального числа последовательность зациклится. Либо зациклится числом 1, либо циклом содержащим 50 (3216). Например: 5 → 19 → 52 → 1D → AA → C8 → D0 → A9 → B5 → 92 → 55 → 32 → A9 → → B5 → 92 → 55 → 32; 2 → 4 → 10 → 1 → 1 Для всех начальных номеров n последовательности меньших 100000016 определите содержит ли последовательность 50 (3216) и в ответе укажите количество последовательностей содержащих 50 (3216).
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|