img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Треугольник с окружностью" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 0
всего попыток: 1
Задача опубликована: 02.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Функция Аккермана A(m,n) рекурсивно задается для неотрицательных целых чисел m и n следующим образом:

A(m, n) = \left\{ \begin{array}{rrrrr}
n+1, m=0 \\
A(m-1, 1), m>0, n=0 \\
A(m-1, A(m, n-1)), m>0, n>0
\end{array}

Например, A(1, 0) = 2, A(2, 2) = 7 и A(3, 4) = 125.

Чему равен остаток от деления \sum A(m,n) на 148, где 0 \le m,n \le 6?

 
Задачу решили: 4
всего попыток: 10
Задача опубликована: 23.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
По окончании игры Альберт получает 1000 руб. за каждое очко.
Можно подсчитать, что после 10 туров с k=1, k=2,: k=10 математическое ожидание выигрыша составит примерно 12059 руб. 48 коп.
Каково будет математическое ожидание выигрыша после 105 туров с k=1, k=2, k=3, ..., k=105? Дайте ответ в копейках, округлив его до ближайшего целого.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 9
всего попыток: 17
Задача опубликована: 12.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: игрыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Ним – это игра, в которой двое участников по очереди берут камни, разложенные на несколько кучек. Каждым ходом игрок должен взять из одной кучки один или несколько камней, но хотя бы один – обязательно!

Проигрывает тот, кому камней не досталось, и кто поэтому не может сделать ход.

Мы рассмотрим наиболее популярную версию игры с тремя кучками камней.

Пусть начальная позиция описывается тройкой чисел (n1,n2,n3), где  n1,n2 и n3 - количество камней в каждой из трех кучек.

  • Позиция называется выигрышной, если первый игрок, правильно выбрав стратегию, может гарантировать свою победу.
  • Позиция называется проигрышной, если первый игрок при правильной игре второго всегда проигрывает.

Например, позиция (0,n,n) – проигрышная для любых n, ибо второй игрок всегда может выравнивать количество камней в двух оставшихся кучках, пока в них что-то остается. По этой же причине позиция (1,2,3) – тоже проигрышная, ибо второй игрок своим ходом всегда может создать позицию вида (0,n,n), например:

Первый игрок: (1,2,1)         Второй игрок: (1,0,1)

Первый игрок: (0,0,1)         Второй игрок: (0,0,0) – победа.

Подсчитайте, сколько существует проигрышных позиций вида (n,2n,3n), где n – натуральное число, не превышающее 1012.

Задачу решили: 7
всего попыток: 11
Задача опубликована: 03.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Как известно, последовательность Фибоначчи определяется рекуррентно:

f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1.

Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106.

Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 17.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.

  • При n=1 первый игрок автоматически проигрывает, поскольку не может сделать ни одного хода.
  • При n=2 есть только один ход, который автоматически ведет к победе.
  • При n=3 первый игрок может выбрать один из двух различных ходов, и оба они ведут к немедленной победе.
  • При n=4 есть три варианта хода. Среди них есть один выигрышный ход, когда игрок закрашивает две средние клетки.
  • При n=5 есть четыре варианта хода (они показаны на рисунке красным цветом), но все они ведут к поражению: второй игрок (показан синим цветом) всегда может выиграть.

eu306.png

Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43.

Найдите миллионное значение n, при котором второй игрок всегда может победить.

 

Задачу решили: 3
всего попыток: 3
Задача опубликована: 14.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом.

Проигрывает тот, кто не может сделать очередной ход.

Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c).

Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными.

Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция.

Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 15.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n.

Например, U( 1234567890, 107-10) = 24.

Найдите U(1234567890987654321, 1012-10).

 
Задачу решили: 4
всего попыток: 6
Задача опубликована: 27.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью.

Перед тем, как прыгнуть, лягушка квакает. 

Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N".

Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P".

Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. 

Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.

 
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.