img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 61
всего попыток: 115
Задача опубликована: 14.08.09 14:29
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: shev (Vya Shevelev)

В одной стране, когда население достигло 1 миллиарда, правитель выдал всем жителям порядковые номера от 1 и до 109. В этой стране счастливым считается число 888, поэтому сначала осчастливили тех, у кого номер оказался кратным 888. Затем счастливчиков упорядочили в порядке возрастания номеров и отобрали тех, кто оказался на местах кратных 888. Эту процедуру продолжали до тех пор, пока участников стало меньше 888. Их и объявили суперсчастливчиками. Чему равна сумма изначальных номеров суперсчастливчиков?

Задачу решили: 11
всего попыток: 41
Задача опубликована: 17.08.09 12:45
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Имеется 100 камней с разными весами от 1 до 100 кг.

Сколько существует способов разбиения их на 2 кучи, при которых общий вес первой превосходит, но не более чем в 2 раза, общий вес второй?

Задачу решили: 21
всего попыток: 33
Задача опубликована: 21.08.09 17:48
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим два треугольника:
A(-340,495), B(-153,-910), C(835,-947)

X(-175,41), Y(-421,-714), Z(574,-645)
Легко проверить, что треугольник ABC содержит начало координат, а треугольник XYZ - нет.

На плоскости заданы 20 точек. Их координаты приведены в таблице:

X 237 -507 237 -90 723 606 -70 607 230 -763 270 2 -370 -37 72 347 863 194 875 391
Y 601 -254 478 965 514 -648 365 -435 -67 -650 245 845 900 -457 -522 705 725 720 -642 990

Сколько треугольников с вершинами в данных точках содержат начало координат?

Задачу решили: 8
всего попыток: 42
Задача опубликована: 23.08.09 13:16
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Группу из 30 студентов нужно разбить на две команды, так чтобы в первой команде было больше студентов, чем во второй, но не более чем в полтора раза. При этом в каждой группе должны оказаться знакомые друг с другом студенты. Знакомство задается матрицей с элементами Aij (1≤i,j≤30), в которой Aij=Aji=1,  если студенты с номерами i и j знакомы, и Aij=Aji=0 - если не знакомы. Также известно, что если i+j и i*j одновременно делятся на 3, то Aij=1, остальные элементы равны нулю. Сколько возможно разбиений на команды?

Задачу решили: 10
всего попыток: 15
Задача опубликована: 24.08.09 11:34
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия:
1) S(B) ≠ S(C), т.е. их суммы элементов не могут быть одинаковы.
2) Если B содержит больше элементов, чем C, то S(B) > S(C).
Например, множество {3,5,6,7} - особое, а множество {3,4,5,6} не является особым, так как не выполняется первое условие: 3+6 = 4+5.
Найдите количество особых множеств А, содержащих 7 элементов, для которых S(A) ≤ 333.

Задачу решили: 26
всего попыток: 42
Задача опубликована: 27.08.09 12:52
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На рисунке в клетки поля размером 5x5 записаны по спирали последовательно простые числа.

Запишите таким же образом, по спирали, последовательно простые числа в клетки поля размером 100x100. Начиная с левого нижнего поля необходимо пройти в правое верхнее поле, двигаться при этом можно только на одну клетку вправо или одну клетку вверх. Найдите такой путь, что сумма чисел в его клетках является максимальной. В ответ введите эту сумму.

Задачу решили: 44
всего попыток: 57
Задача опубликована: 29.08.09 00:45
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Фибоначчи определяется рекуррентным соотношением:

Fn = Fn-1 + Fn-2, где F1 = 1 и F2 = 1.

317-ый член последовательности Фибоначчи равен

793591407804151926593793042126891128819610710140145037958273777397.

Три его первые цифры совпадают с тремя последними, но идут в обратном порядке. Это наименьший член последовательности, обладающий данным свойством.

Пусть Fk - наименьший член последовательности, у которого пять первых цифр совпадают с пятью последними, но идут в обратном порядке.

Найдите k.

Задачу решили: 6
всего попыток: 14
Задача опубликована: 01.09.09 00:49
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия:
1) S(B) ≠ S(C), т.е. их суммы элементов не могут быть одинаковы.
2) Если B содержит больше элементов, чем C, то S(B) > S(C).
Например, множество {3,5,6,7} - особое, а множество {3,4,5,6} не является особым, так как не выполняется первое условие: 3+6 = 4+5.

Найдите количество непустых особых множеств А, все элементы которых не превышают 50.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 07.09.09 10:35
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через S(A) сумму элементов множества A. Будем называть множество целых положительных чисел особым, если для его любых двух непустых непересекающихся подмножеств B и C выполняются следующие условия:
1) S(B) ≠ S(C), т.е. их суммы элементов не могут быть одинаковы.
2) Если B содержит больше элементов, чем C, то S(B) > S(C).
Например, множество {3,5,6,7} - особое, а множество {3,4,5,6} не является особым, так как не выполняется первое условие: 3+6 = 4+5.

Предположим, что n элементов множества расположены в строго возрастающем порядке, и нам нужно проверить, является ли оно особым. Оказывается, что при n=4 из 25 пар подмножеств достаточно всего двух сравнений, а при n=7 достаточно 73 из 966 возможных сравнений.
Сколько нужно выполнить сравнений (из 86526 возможных), чтобы выяснить, является ли особым упорядоченное по возрастанию множество, состоящее из 11 натуральных чисел?

Задачу решили: 46
всего попыток: 66
Задача опубликована: 09.09.09 09:37
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pakko

В умножении "столбиком" цифры зашифрованы "звездочками". Вместо любой "звездочки" может быть любая цифра.

      * * *
   x    * *
    -------
    * * * *
  * * * *
  ---------
  * * * * *

Сколько всего существует вариантов подстановок цифр вместо "звездочек" для данного примера?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.