img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 6
Задача опубликована: 05.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим


Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.

С другой стороны, 1+i не является делителем 5, поскольку .

Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.

n Гауссовы делители с положительной
вещественной частью
Сумма этих делителей
s(n)
1 1 1
2 1, 1+i, 1-i, 2 5
3 1, 3 4
4 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 13
5 1, 1+2i, 1-2i, 2+i, 2-i, 5 12

Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 12.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое.

Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров.

Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар.

Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех).

То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n.

Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.

Задачу решили: 5
всего попыток: 16
Задача опубликована: 26.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Посмотрим на десятичную запись первых неотрицательных целых чисел:

0 1 2 3 4 5 6 7 8 9 10 11 12....

Выберем одну из цифр, например единицу (d=1), а затем начнем выписывать наши числа, подсчитывая количество использованных единиц. Обозначим полученное количество через  f(n,1) и запишем его против каждого числа n. Вот что получится:

n    f(n,1)
0    0
1    1
2    1
3    1
4    1
5    1
6    1
7    1
8    1
9    1
10    2
11    4
12    5


Заметьте, что f(n,1) не равно 3 ни при каких n.
Уравнение f(n,1)=n имеет решения n=0 и n=1, а следующее решение - только n=199981.

Аналогично, подсчитаем, сколько раз мы использовали цифру d, и обозначим полученное количество через f(n,d).
Заметим, что для каждой цифры d, кроме нуля, n=0 является первым решением уравнения f(n,d)=n.
Обозначим через s(d) сумму всех решений уравнения f(n,d)=n. Например, s(1)=22786974071.

Найдите ∑ s(d) при 0 ≤ d ≤ 9.

Замечание: Если для какого-то n f(n,d)=n для нескольких значений d, n необходимо учитывать каждый раз для каждой цифры d.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 02.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:

1/1+1/1=20/10 1/1+1/2=15/10 1/1+1/5=12/10 1/1+1/10=11/10 1/2+1/2=10/10
1/2+1/5=7/10 1/2+1/10=6/10 1/3+1/6=5/10 1/3+1/15=4/10 1/4+1/4=5/10
1/4+1/20=3/10 1/5+1/5=4/10 1/5+1/10=3/10 1/6+1/30=2/10 1/10+1/10=2/10
1/11+1/110=1/10 1/12+1/60=1/10 1/14+1/35=1/10 1/15+1/30=1/10 1/20+1/20=1/10

А сколько решений будет иметь это уравнение при n=16?

Задачу решили: 10
всего попыток: 14
Задача опубликована: 16.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами:
24 = 2×2×2×3
24 = 2×3×4
24 = 2×2×6
24 = 4×6
24 = 3×8
24 = 2×12
24 = 24
Напомним, что "цифровым корнем" десятичного числа называют величину, получаемую суммированием его цифр. Если в результате получается число большее, чем 9, эту операцию повторяют несколько раз до тех пор, пока не получится число, меньшее, чем 10. Например, цифровой корень числа 467 равен 8.

Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:

Разложение Сумма цифровых корней
2×2×2×3 9
2×3×4 9
2×2×6 10
4×6 10
3×8 11
2×12 5
24 6

Максимальная сумма цифровых корней для всех разложений числа 24 равна 11.
Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n).
Найдите наименьшее n, для которого mdrs(n)>60.

Задачу решили: 4
всего попыток: 6
Задача опубликована: 16.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку.

Задачу решили: 11
всего попыток: 17
Задача опубликована: 23.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n).

Например:

9! = 362880 и f(9)=6288

10! = 3628800 и f(10)=6288

20! = 2432902008176640000 и f(20)=7664

Найдите f(1014).

Задачу решили: 0
всего попыток: 1
Задача опубликована: 23.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.

Задачу решили: 54
всего попыток: 91
Задача опубликована: 30.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16

Задачу решили: 29
всего попыток: 58
Задача опубликована: 20.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

13-е число месяца может быть любым днем недели с понедельника по воскресенье, казалось бы с одинаковой вероятностью, примерно равной 1/7=0,142857... (в случае равномерного распределения). Найдите реальную долю попадания 13-го числа на пятницу с 2000-го года по 3000-й год включительно (по григорианскому календарю).

(В ответе укажите первые шесть цифр после запятой, без округления. Ноль и запятую не нужно вводить.)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.