img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Вчера Вова задумал 5-значное число, и вот как проходила игра:
1) Дима: 90342;  Вова: 2 цифры угаданы
2) Дима: 70794;  Вова: 0 цифр угадано
3) Дима: 39458;  Вова: 2 цифры угаданы
4) Дима: 34109;  Вова: 1 цифра угадана
5) Дима: 51545;  Вова: 2 цифры угаданы
Получив эту информацию, Дима сообразил, что для задуманного числа осталось всего четыре возможности: 31348, 31442, 39345, 39542. Тогда Дима сделал еще один ход:
6) Дима: 12531;  Вова: 1 цифра угадана
и определил загаданное число:  39542, поскольку других вариантов не осталось.
А сегодня игру решили усложнить. Теперь Вова загадал 16-разрядное число. Вот протокол игры:

  Попытка Димы Ответ Вовы: количество угаданных цифр
1 5616185650518293 2
2 3847439647293047 1
3 5855462940810587 3
4 9742855507068353 3
5 4296849643607543 3
6 3174248439465858 1
7 4513559094146117 2
8 7890971548908067 3
9 8157356344118483 1
10 2615250744386899 2
11 8690095851526254 3
12 6375711915077050 1
13 6913859173121360 1
14 6442889055042768 2
15 2321386104303845 0
16 2326509471271448 2
17 5251583379644322 2
18 1748270476758276 3
19 4895722652190306 1
20 3041631117224635 3

Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В некотором городе построили телефонную сеть на миллион абонентов с шестизначными телефонными номерами. Данные о телефонных звонках фиксировали в базе данных. Перед вами несколько первых записей из нее:

Порядковый номер звонка,
n
Кто звонит,
S2n-1
Кому звонят,
S2n
1 200007 100053
2 600183 500439
3 600863 701497
... ... ...

Номера абонентов S2n-1 и S2n для данной таблицы мы получили с помощью генератора псевдослучайных чисел Фибоначчи с запаздыванием:
При 1 ≤k≤55, Sk = [100003 - 200003k + 300007k3] (mod 1000000)
При 56 ≤k, Sk = [Sk-24 + Sk-55] (mod 1000000)
(p(mod q) означает остаток от деления p на q)
При необходимости полученные числа дополняли до шести знаков нулями слева.
Мы будем считать, что если X позвонил Y, или наоборот, Y позвонил X, X и Y становятся друзьями. Если X является другом Y, а Y другом Z, то мы также считаем X и Z друзьями, и так далее для сколь угодно длинных цепочек.
Телефонный номер мэра города – 100000. После очередного звонка количество друзей мэра превысило половину населения города. Сколько в этот момент у него оказалось друзей (включая его самого)?

Задачу решили: 20
всего попыток: 32
Задача опубликована: 24.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Полупростым называется натуральное число, представимое в виде произведения двух простых чисел (не обязательно различных), например, 15 = 3 × 5; 9 = 3 × 3; 22 = 2 × 11.
Существует ровно десять полупростых чисел, не превышающих 30: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26. Их сумма равна 152.
Найдите сумму полупростых чисел, не превышающих 108.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 31.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Операция возведения в сверхстепень, или тетрация, обозначается как a↑↑b или ba, и определяется для натуральных a и b следующим образом:
a↑↑1 = a,
a↑↑(k+1) = a (a↑↑k).
Так, 3↑↑2 = 33 = 27, отсюда 3↑↑3 = 327 = 7625597484987, а 3↑↑4 примерно равно 103638334640024,1.
Найдите 8 последних цифр числа 2011 ↑↑ (2011 ↑↑ 2011).

Задачу решили: 11
всего попыток: 17
Задача опубликована: 10.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Пусть (x1, x2, ... , xm) – такой набор положительных вещественных чисел, для которого выполняется условие x12 + x22 + ... + xm2 = m, а произведение Pm = x1 * x22 * ... * xmm принимает максимальное значение. Можно проверить, что [P10] = 64 (здесь скобки [ ] означают целую часть числа).
А чему равно [P25]?

Задачу решили: 12
всего попыток: 16
Задача опубликована: 14.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В одном университете очень строго следят за посещаемостью и дисциплиной. Если в контрольный  период студент хотя бы дважды опаздывает или в течение любых трех дней подряд хотя бы дважды прогуливает, то его лишают стипендии.
Если контрольный период продолжается n дней, то его можно зашифровать строкой из n символов, используя букву L для опозданий, A для прогулов и O для дней, когда студент приходил на занятия вовремя.
Из 81 возможной строки для 4-дневного зачетного периода стипендиальным требованиям удовлетворяют 24 строки:

OOOO OOOA OOOL OOAO OOAL OOLO OOLA OAOO OAOL OALO OLOO OLOA OLAO AOOO AOOA AOOL AOLO AOLA ALOO ALOA LOOO LOOA LOAO LAOO

А сколько строк удовлетворяет стипендиальным требованиям для 30-дневного зачетного периода?

+ 13
  
Задачу решили: 34
всего попыток: 54
Задача опубликована: 14.02.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На Олимпиаде в Индии, которую проводил Маугли, в забегах приняли участие все животные - и жалкие дождевые черви, и вожак стаи старый Акелла, и даже злобный Шер-Хан. Их оказалось очень много - ровно 1 миллиард. Все животные получили последовательные номера от единицы и до одного миллиарда.

После первого забега победили участники у которых были нечетные номера, их заново пронумеровали - 1-й сохранил свой номер, участник с номером 3-й номер стал 2-м, с номером 5 - стал 3-м и так далее, проигрывшие выбыли из соревнования.

Во втором забеге победили все участники, которые имели четные номера, их также заново пронумеровали: 2-й стал 1-м, 4-й - 2-м, 6-й - 3-м и так далее.

Как потом выяснилось, и далее в нечетных забегах побеждали участники с нечетными номерами, а в четных - с четными, и каждый раз после очередного забега участников перенумеровывали по той же схеме.

В конце концов победила хитрая Багира. Выясните какой у нее был номер в начале сревнований?

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 10
всего попыток: 17
Задача опубликована: 21.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число называется свободным от квадратов, если оно не делится ни на один квадрат простого числа. Например, числа 1, 2, 3, 5, 6, 7, 10, 11 свободны от квадратов, а числа 4, 8, 9, 12 - нет.
Сколько свободных от квадратов чисел не превышает 330?

Задачу решили: 11
всего попыток: 20
Задача опубликована: 07.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем натуральное число дважды квадратным, если оно является квадратом натурального числа и из его цифр можно составить большее число, также являющееся квадратом натурального числа. Например, 256 = 162 - дважды квадратное, поскольку 625=252. Найдите количество дважды квадратных чисел, меньших 1015.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.