Лента событий:
TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
2
Определим f(n) как сумму факториалов цифр числа n. Например, f(342) = 3! + 4! + 2! = 32.
Задачу решили:
3
всего попыток:
5
Последовательность g(k) задана следующим образом:
Задачу решили:
6
всего попыток:
9
Будем называть натуральное число достижимым, если оно является значением выражения, построенного по следующим правилам: Сколько всего существует достижимых чисел?
Задачу решили:
3
всего попыток:
5
Рассмотрим следующую игру, рассчитанную на двух участников.
Проигрывает тот, кому камней не досталось.
Задачу решили:
5
всего попыток:
11
Рассмотрим число 6. Его делители – это 1,2,3 и 6. Все числа от 1 до 6 могут быть представлены в виде суммы различных делителей числа 6:
Задачу решили:
11
всего попыток:
15
Возьмем число 1222354416 и запишем его в 4-ичной системе счисления, предварив запись двумя нулями. В результате получим последовательность цифр: 001020312322113300 Эта последовательность обладает следующими свойствами:
Найдите сумму чисел, чья запись в 4-ичной системе счисления удовлетворяет условиям 1-3. Ответ представьте в десятичной системе счисления.
Задачу решили:
7
всего попыток:
26
У числа 12 шесть делителей: 1,2,3,4,6 и 12. Наибольший его делитель, не превышающий квадратный корень из 12 равен 3. Наименьший его делитель, превышающий квадратный корень из 12 равен 4. Будем называть наибольший делитель числа n, не превышающий квадратный корень из n, нижним псевдокорнем из n или LPR(n), а наименьший делитель, превышающий квадратный корень из n- верхним псевдокорнем из n или HPR(n). Например, LPR(3102)=47 и HPR(3102)=66. Пусть p – произведение всех простых чисел, не превышающих 150. Найдите HPR(p) - LPR(p)
Задачу решили:
3
всего попыток:
58
Легко проверить, что существует ровно 23 натуральных числа, не превышающих 1000 и имеющих ровно 4 различных простых делителя, не превышающих 100.
Задачу решили:
9
всего попыток:
10
Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их сумму обозначим как S(n). Найдите S(123456789987654321).
Задачу решили:
3
всего попыток:
4
Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их количество обозначим как C(n). Найдите сумму таких n≤1011, для которых C(n)>100.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|