img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 36
Задача опубликована: 15.11.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество чисел меньших 108, которые становятся полными кадратами в результате какой-нибудь перестановки цифр.

(Тождественная перестановка допускается, ведущие нули, возникающие при перестановке опускаются.)
Задачу решили: 12
всего попыток: 32
Задача опубликована: 15.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VVSH (Василий Шедько)

Сколько существует 18-значных чисел, в десятичной записи которых
нет нулей,
не более одной единицы,
не более двух двоек,
не более трех троек,
не более четырех четверок,
не более пяти пятерок,
не более шести шестерок,
не более семи семерок,
не более восьми восьмерок,
и не более девяти девяток?

Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Рассмотрим сколькими способами можно представить натуральное число n в виде суммы степеней 2, используя при этом каждую из степеней не более чем дважды. Полученное число обозначим через f(n).
Например, f(10)=5, поскольку существует ровно пять способов выразить число 10 указанным образом:
10 = 8+2 = 8+1+1 = 4+4+2 = 4+4+1+1 = 4+2+2+1+1
Приняв, что f(0)=1, запишем  последовательность рациональных чисел f(n)/f(n-1):
1/1, 2/1, 1/2, 3/1, 2/3, 3/2
В этой последовательности число 2/3 находится на пятом месте, а число 13/17 – на 241-ом.
На каком месте в этой последовательности расположено число 231721/134654?

Задачу решили: 10
всего попыток: 14
Задача опубликована: 13.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Для какого наименьшего целого числа a количество различных прямоугольных треугольников с целыми сторонами и катетом длиной a в точности равно 39062?

Задачу решили: 11
всего попыток: 32
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим три семейства функций:

f1,n(x,y,z) = xn+1 + yn+1 – zn+1

f2,n(x,y,z) = (x y + y z + z x)*(xn-1 + yn-1 – zn-1)

f3,n (x,y,z) = – x y z * (xn-2 + yn-2 – zn-2)

и их сумму:

fn (x,y,z) = f1,n (x,y,z) + f2,n (x,y,z) + f3,n (x,y,z)

Будем называть (x,y,z) золотой тройкой порядка k, если x, y и z – положительные рациональные числа, представимые в виде правильных дробей со знаменателем, не превышающим k, и существует такое целое n, что fn (x,y,z) = 0

Обозначим через s(x,y,z) = x + y + z.

Найдите сумму всех различных значений s для золотых троек порядка 50. Результат округлите до ближайшего целого. 

Задачу решили: 11
всего попыток: 20
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим число 44456656. Заметим, что соседние десятичные цифры в его десятичной записи отличаются не более чем на единицу. Будем называть такие натуральные числа ступенчатыми.
Найдите, сколько существует ступенчатых чисел, не превышающих 1040 и содержащих в своей десятичной записи все цифры от 0 до 9.

Задачу решили: 7
всего попыток: 11
Задача опубликована: 27.12.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Числа 25 и 1123 можно разбить на 2 части так, что в результате разбиения получаются два простых числа: 25 → 2 и 5, 1123 → 11 и 23. Число 1303 также разбивается на 13 и 03 (равное 3), а число 2347 можно разбить двумя способами: 2 и 347, 23 и 47. Сколько существует чисел, меньших 1010, которые допускают не менее двух разбиений на простые числа?

Задачу решили: 12
всего попыток: 14
Задача опубликована: 27.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Возьмем натуральное число N и разделим его на k равных частей r=N/k. Тогда N = r + r + ... + r. Обозначим через P произведение этих частей: P = r × r × ... × r = rk. Например, если разделить 11 на пять равных частей (11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2), P окажется равным 2.25 = 51.53632. Обозначим через Pmax(N) максимальное значение P, которое можно получить для данного значения N. Оказывается, что для N=11 максимум достигается при k=4: Pmax= (11/4)4= 14641/256 = 57.19140625. Это число является конечной десятичной дробью. Однако для N=8 максимум достигается при разбиении на три части: Pmax= 512/27, и это число не может быть представлено в виде конечной десятичной дроби. Определим функцию D(N) как число десятичных знаков после запятой в Pmax(N) для случая, когда Pmax(N) представимо конечной десятичной дробью. В случае, когда Pmax(N) не может быть представлено в виде конечной десятичной дроби, будем считать, что D(N)=0. Например, D(11)=8, D(8)=0. Для 5 ≤ N ≤ 100 ΣD(N)=1027. Найдите ΣD(N) для 5 ≤ N ≤ 10000.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Вчера Вова задумал 5-значное число, и вот как проходила игра:
1) Дима: 90342;  Вова: 2 цифры угаданы
2) Дима: 70794;  Вова: 0 цифр угадано
3) Дима: 39458;  Вова: 2 цифры угаданы
4) Дима: 34109;  Вова: 1 цифра угадана
5) Дима: 51545;  Вова: 2 цифры угаданы
Получив эту информацию, Дима сообразил, что для задуманного числа осталось всего четыре возможности: 31348, 31442, 39345, 39542. Тогда Дима сделал еще один ход:
6) Дима: 12531;  Вова: 1 цифра угадана
и определил загаданное число:  39542, поскольку других вариантов не осталось.
А сегодня игру решили усложнить. Теперь Вова загадал 16-разрядное число. Вот протокол игры:

  Попытка Димы Ответ Вовы: количество угаданных цифр
1 5616185650518293 2
2 3847439647293047 1
3 5855462940810587 3
4 9742855507068353 3
5 4296849643607543 3
6 3174248439465858 1
7 4513559094146117 2
8 7890971548908067 3
9 8157356344118483 1
10 2615250744386899 2
11 8690095851526254 3
12 6375711915077050 1
13 6913859173121360 1
14 6442889055042768 2
15 2321386104303845 0
16 2326509471271448 2
17 5251583379644322 2
18 1748270476758276 3
19 4895722652190306 1
20 3041631117224635 3

Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В некотором городе построили телефонную сеть на миллион абонентов с шестизначными телефонными номерами. Данные о телефонных звонках фиксировали в базе данных. Перед вами несколько первых записей из нее:

Порядковый номер звонка,
n
Кто звонит,
S2n-1
Кому звонят,
S2n
1 200007 100053
2 600183 500439
3 600863 701497
... ... ...

Номера абонентов S2n-1 и S2n для данной таблицы мы получили с помощью генератора псевдослучайных чисел Фибоначчи с запаздыванием:
При 1 ≤k≤55, Sk = [100003 - 200003k + 300007k3] (mod 1000000)
При 56 ≤k, Sk = [Sk-24 + Sk-55] (mod 1000000)
(p(mod q) означает остаток от деления p на q)
При необходимости полученные числа дополняли до шести знаков нулями слева.
Мы будем считать, что если X позвонил Y, или наоборот, Y позвонил X, X и Y становятся друзьями. Если X является другом Y, а Y другом Z, то мы также считаем X и Z друзьями, и так далее для сколь угодно длинных цепочек.
Телефонный номер мэра города – 100000. После очередного звонка количество друзей мэра превысило половину населения города. Сколько в этот момент у него оказалось друзей (включая его самого)?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.