img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 9
Задача опубликована: 30.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим уравнение вида a2 + b2 = N,  где N- некоторое нечетное натуральное число, и будем искать его натуральные решения (a, b), где a четно, и b нечетно.
При N=65 наше уравнение имеет два таких решения:
a=8, b=1 и a=4, b=7.
Обозначим через S(N) сумму значений a для всех решений уравнения a2 + b2 = N. Тогда S(65) = 8 + 4 = 12.

Найдите ∑S(N) для всех бесквадратных натуральных N,  имеющих простые делители только вида 4k+1, где k – натуральное число и 4k+1 < 150.

Примечание: бесквадратным (свободным от квадратов) называется натуральное число, которое не делится ни на один квадрат, кроме 1.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Попробуем построить признак делимости для делителя p > 1, взаимно простого с 10. Мы хотим найти для каждого натурального n другое число n1, которое делится на p тогда и только тогда, когда n делится на p. Два целых числа называются равноделимыми на p, если либо они оба делятся на p, либо оба не делятся. Если b – последняя цифра числа n, и n=10a+b, мы будем искать n1 в виде:
n1 = a + b ? m.
Остается найти подходящее значение  m < p, которое будем  называть фактором делимости. Тогда для достаточно больших n мы сможем построить убывающую последовательность равноделимых чисел.
Например, для p=113 фактор делимости равен 34.
При n=76275 получим n1 = 7627 + 5 * 34 = 7797, и оба числа 76275 и 7797 делятся на 113.
При n=12345 получим n1 = 1234 + 5 * 34 = 1404, и оба числа 12345 и 1404 не делятся на 113.
Сумма факторов делимости для всех простых p вида 4k+3, не превышающих 1000, равна 19961.
Найдите сумму факторов делимости для всех простых p вида 4k+3, не превышающих 2*107.

Задачу решили: 9
всего попыток: 12
Задача опубликована: 28.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Определим модифицированную последовательность Коллатца как последовательность натуральных чисел, начинающуюся с числа a1, а далее задаваемую рекуррентно по следующим правилам:

  • an+1 = an/3, когда an делится на 3. Обозначим такой переход от  an к an+1 символом "D".
  • an+1 = (4an + 2)/3, если an дает остаток 1 при делении на 3. Обозначим этот случай символом "U".
  • an+1 = (2an - 1)/3 , если an дает остаток 2 при делении на 3.

Обозначим этот случай символом "d".
Последовательность заканчивается первой встретившейся единицей.
Например, при a1 =231 получим последовательность чисел {231,77,51,17,11,7,10,14,9,3,1} и соответствующую строку символов - "DdDddUUdDD".
Для a1 =1004064 получим строку символов DdDddUUdDDDdUDUUUdDdUUDDDUdDD, которая начинается с DdDddUUdDD.

Найдите все a1<1015, у которых цепочка символов, соответствующая модифицированной последовательности Коллатца, начинается с dDUddDDUUUUUdDDUdUdDUdDUddUDUd.
В качестве ответа укажите их сумму.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 27.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько существует 18-значных натуральных чисел n, таких, что сумма цифр n равна сумме цифр числа 137n?

Задачу решили: 4
всего попыток: 7
Задача опубликована: 26.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6.

Обозначим через S(n) количество натуральных чисел k < 10n, таких что 

  • k делится на 69;
  • d(k) = 69. 

Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036.

Найдите остаток от деления S(2012) на 109.

Задачу решили: 4
всего попыток: 5
Задача опубликована: 19.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2.

Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа.

Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы.

Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы.  Здесь φ(S) означает функцию Эйлера. 

Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51.

Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396.

Найдите количество 18-значных сильно ахиллесовых чисел.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 10.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи:

S =1234567891011121314151617181920212223242...

Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее.

Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365.

Найдите ∑f(11k), где 1≤k≤6.

Задачу решили: 2
всего попыток: 9
Задача опубликована: 24.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными.

Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32).

Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения:

11 = 2 + 9 = (21×30 + 20×32

11 = 8 + 3 = (23×30 + 20×31)

Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2.

Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641.

Найдите сумму простых q < 1000000, для которых P(q)=2.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Голомба {G(n)}  определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n)  вхождений каждого натурального числа n.
Вот несколько первых значений G(n):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 ...

Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30.

Найдите ΣG(2n)для 1 ≤ n < 60.

Задачу решили: 10
всего попыток: 22
Задача опубликована: 14.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Возьмем матрицу n×n, выберем из нее n элементов так, чтобы никакие два из них не стояли в одной строке или столбце, и найдем их сумму. Минимальное значение такой суммы будем называть матричной суммой для данной матрицы.
Например, для матрицы:

  7  53 183 439 863
497 383 563  79 973
287  63 343 169 583
627 343 773 959 943
767 473 103 699 303

матричной суммой будет число 1075=7+79+343+343+303.

Найдите матричную сумму для матрицы:

  7  53 183 439 863 497 383 563  79 973 287  63 343 169 583
627 343 773 959 943 767 473 103 699 303 957 703 583 639 913
447 283 463  29  23 487 463 993 119 883 327 493 423 159 743
217 623   3 399 853 407 103 983  89 463 290 516 212 462 350
960 376 682 962 300 780 486 502 912 800 250 346 172 812 350
870 456 192 162 593 473 915  45 989 873 823 965 425 329 803
973 965 905 919 133 673 665 235 509 613 673 815 165 992 326
322 148 972 962 286 255 941 541 265 323 925 281 601  95 973
445 721  11 525 473  65 511 164 138 672  18 428 154 448 848
414 456 310 312 798 104 566 520 302 248 694 976 430 392 198
184 829 373 181 631 101 969 613 840 740 778 458 284 760 390
821 461 843 513  17 901 711 993 293 157 274  94 192 156 574
 34 124   4 878 450 476 712 914 838 669 875 299 823 329 699
815 559 813 459 522 788 168 586 966 232 308 833 251 631 107
813 883 451 509 615  77 281 613 459 205 380 274 302  35 805

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.