Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
13
Назовем треугольник с целочисленными сторонами a≤b≤c слегка тупоугольным, если его стороны удовлетворяют равенству
Задачу решили:
4
всего попыток:
13
Рассмотрим окружность, заданную тремя точками (0,0), (N,0) и (N,N). Найдите сумму таких натуральных N≤1011, для которых f(N) = 588.
Задачу решили:
3
всего попыток:
5
Для заданного множества точек на плоскости М определим выпуклую дыру H как многоугольник, все вершины которого принадлежат множеству М, и ни одна точка из М не содержится во внутренней области H (на сторонах многоугольника точки лежать могут). Красным цветом показана выпуклая дыра наибольшей площади: ее площадь составляет 1049694,5 единиц, и для данного множества М нет выпуклых дыр с большей площадью. Для нашего примера мы использовали первые 20 точек, полученные с помощью генератора случайных чисел следующим образом. Точка с номером k имеет координаты (T2k-1, T2k), а псевдослучайные числа Tk получены при помощи рекуррентной формулы: Sn+1 = Sn2 mod 50515093, Тогда координаты первых трех точек будут:
Задачу решили:
2
всего попыток:
5
Как известно, японцы застилают полы прямоугольными матами-татами, укладывая их без зазоров и перекрытий согласно строгим традиционным правилам. Хотя в разных частях Японии размер татами различается, везде его стороны соотносятся как 2:1. Поэтому стороны японской комнаты соотносятся как целые числа a и b, а ее площадь можно выразить как s = a × b.
Задачу решили:
2
всего попыток:
7
Дан треугольник ABC, длины сторон которого выражаются различными целыми числами: |CB|<|AC|<|AB|. Отрезки EF, EG и FG разбивают треугольник ABC на четыре треугольника меньшего размера: AEG, BFE, CGF и EFG.
Задачу решили:
3
всего попыток:
6
Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами: Найдите остаток от деления F(25,35) на 108.
Задачу решили:
5
всего попыток:
7
Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:
Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй. Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда Z(6)=18, Z(10)=964, Z(15)= 360505. Найдите ∑Z(n) для 1 ≤ n ≤ 18.
Задачу решили:
4
всего попыток:
8
Рассмотрим треугольник, длины сторон которого – целые числа a, b и с, удовлетворяющие неравенству a ≤ b ≤ c. Подсчитайте, сколько существует различных примитивных треугольников, периметр которых – семизначное число.
Задачу решили:
4
всего попыток:
9
Рассмотрим треугольник со сторонами 6,8 и 10. Легко подсчитать, что и его периметр, и его площадь равны 24, а отношение площади к периметру равно 1. У треугольника со сторонами 13,14 и 15 периметр равен 42, а площадь — 84 единицам. Отношение площади этого треугольника к его периметру равно 2. Подсчитайте, сколько существует различных треугольников с целыми сторонами, для которых отношение площади к периметру равно целому числу, не превышающему 1000.
Задачу решили:
3
всего попыток:
3
Рассмотрим две окружности, у которых и центры, и точки пересечения имеют целочисленные координаты. Выпуклую область, ограниченную такой парой окружностей будем называть линзой, если она не имеет внутренних точек с целочисленными координатами. Радиусы окружностей, ограничивающих линзу, назовем радиусами линзы. На рисунке ниже показаны следующие окружности: C0: x2+y2=25 Линзы, заключенные между окружностями C0 и C1 и между C0 и C2, закрашены красным. Обозначим через L(N) количество различных пар чисел (r1,r2), для которых существует линза с радиусами r1 и r2, и 0<r1≤ r2≤ N. Можно проверить, что L(10) = 30 и L(100) = 3442. Найдите Σ L(10k), где 1 ≤ k ≤ 5.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|