Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
10
Назовем треугольник с целочисленными сторонами a≤b≤c слегка остроугольным, если его стороны удовлетворяют равенству
Задачу решили:
5
всего попыток:
13
Назовем треугольник с целочисленными сторонами a≤b≤c слегка тупоугольным, если его стороны удовлетворяют равенству
Задачу решили:
0
всего попыток:
1
Возьмем вещественное число x.
Задачу решили:
10
всего попыток:
14
Последовательность 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201 ... определена следующим образом:
Задачу решили:
5
всего попыток:
8
Функция бланманже определена на промежутке [0, 1] следующим образом: Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Задачу решили:
5
всего попыток:
8
Рассмотрим число 3600. Оно имеет интересную особенность:
Задачу решили:
5
всего попыток:
5
Для произвольных строк A и B определим FA,B как последовательность строк (A,B,AB,BAB,ABBAB,...), в которой каждая строка, начиная с третьей, является конкатенацией (соединением) двух предыдущих.
Задачу решили:
15
всего попыток:
30
Совершенные числа равны сумме своих делителей (исключая само число). Полусовершенными числами назовем натуральные числа, которые на единицу больше или меньше суммы своих делителей. Например, 2 или 4. Найдите сумму всех полусовершенных чисел, меньших 109.
Задачу решили:
4
всего попыток:
13
Рассмотрим окружность, заданную тремя точками (0,0), (N,0) и (N,N). Найдите сумму таких натуральных N≤1011, для которых f(N) = 588.
Задачу решили:
5
всего попыток:
5
Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|