Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
10
Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их сумму обозначим как S(n). Найдите S(123456789987654321).
Задачу решили:
3
всего попыток:
4
Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их количество обозначим как C(n). Найдите сумму таких n≤1011, для которых C(n)>100.
Задачу решили:
4
всего попыток:
9
Рассмотрим уравнение вида a2 + b2 = N, где N- некоторое нечетное натуральное число, и будем искать его натуральные решения (a, b), где a четно, и b нечетно. Найдите ∑S(N) для всех бесквадратных натуральных N, имеющих простые делители только вида 4k+1, где k – натуральное число и 4k+1 < 150. Примечание: бесквадратным (свободным от квадратов) называется натуральное число, которое не делится ни на один квадрат, кроме 1.
Задачу решили:
5
всего попыток:
6
Попробуем построить признак делимости для делителя p > 1, взаимно простого с 10. Мы хотим найти для каждого натурального n другое число n1, которое делится на p тогда и только тогда, когда n делится на p. Два целых числа называются равноделимыми на p, если либо они оба делятся на p, либо оба не делятся. Если b – последняя цифра числа n, и n=10a+b, мы будем искать n1 в виде:
Задачу решили:
9
всего попыток:
12
Определим модифицированную последовательность Коллатца как последовательность натуральных чисел, начинающуюся с числа a1, а далее задаваемую рекуррентно по следующим правилам:
Обозначим этот случай символом "d". Найдите все a1<1015, у которых цепочка символов, соответствующая модифицированной последовательности Коллатца, начинается с dDUddDDUUUUUdDDUdUdDUdDUddUDUd.
Задачу решили:
0
всего попыток:
1
Функция Аккермана рекурсивно задается для неотрицательных целых чисел и следующим образом: Например, , и . Чему равен остаток от деления на 148, где ?
Задачу решили:
4
всего попыток:
10
Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
Задачу решили:
3
всего попыток:
8
Сколько существует 18-значных натуральных чисел n, таких, что сумма цифр n равна сумме цифр числа 137n?
Задачу решили:
4
всего попыток:
7
Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6. Обозначим через S(n) количество натуральных чисел k < 10n, таких что
Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036. Найдите остаток от деления S(2012) на 109.
Задачу решили:
9
всего попыток:
17
Ним – это игра, в которой двое участников по очереди берут камни, разложенные на несколько кучек. Каждым ходом игрок должен взять из одной кучки один или несколько камней, но хотя бы один – обязательно! Проигрывает тот, кому камней не досталось, и кто поэтому не может сделать ход. Мы рассмотрим наиболее популярную версию игры с тремя кучками камней. Пусть начальная позиция описывается тройкой чисел (n1,n2,n3), где n1,n2 и n3 - количество камней в каждой из трех кучек.
Например, позиция (0,n,n) – проигрышная для любых n, ибо второй игрок всегда может выравнивать количество камней в двух оставшихся кучках, пока в них что-то остается. По этой же причине позиция (1,2,3) – тоже проигрышная, ибо второй игрок своим ходом всегда может создать позицию вида (0,n,n), например: Первый игрок: (1,2,1) Второй игрок: (1,0,1) Первый игрок: (0,0,1) Второй игрок: (0,0,0) – победа. Подсчитайте, сколько существует проигрышных позиций вида (n,2n,3n), где n – натуральное число, не превышающее 1012.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|