Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
108
всего попыток:
144
Найдите сумму всех натуральных чисел N<109, которые делятся на 11 и N/11 равно сумме квадратов цифр N.
Задачу решили:
86
всего попыток:
120
Найдите сумму первых 6 натуральных чисел, у которых последняя цифра – 6, и каждое из них увеличивается в 4 раза от перестановки последней цифры в начало.
Задачу решили:
63
всего попыток:
150
Найти наибольшее значение, которое может принять произведение нескольких натуральных чисел, сумма которых равна 2009.
Задачу решили:
78
всего попыток:
99
Найдите сумму всех натуральных чисел n таких, что (2n + 1)/n² является натуральным числом.
Задачу решили:
55
всего попыток:
70
Натуральные числа (a,b) такие, что число ab(a + b) не делится на 7, а число (a + b)7 – a7 – b7 делится на 77. Чему равно минимальное произведение a*b таких чисел?
Задачу решили:
81
всего попыток:
115
Для некоторых натуральных чисел m и n (m < n) последние три цифры десятичной записи чисел 2009n и 2009m совпадают. Чему равна минимальная сумма m+n?
Задачу решили:
42
всего попыток:
77
Пусть a и b – натуральные числа, a < b. При делении a² + b² на a + b получается частное q и остаток r. Найти количество всех разных чисел b из пар (a,b), для которых q² + r = 2009.
Задачу решили:
31
всего попыток:
45
Некоторые пары простых чисел обладают таким свойством: если записать их подряд в произвольном порядке, то получится тоже простое число. Например, этим свойством обладают числа 3 и 7, поскольку 37 и 73 тоже простые. Найдите среди простых чисел меньших 10000 все возрастающие четверки простых чисел такие, что любая пара из четверки обладает описанным свойством. Например, такой четвёркой является 3, 7, 109, 673. В разных четверках числа могут повторяться. Вычислите сумму всех чисел во всех четверках.
Задачу решили:
47
всего попыток:
132
Десятичная запись числа 987654321! заканчивается на 246913573 нулей. Чему равны последние шесть ненулевых цифр?
Задачу решили:
86
всего попыток:
136
Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1. Сколько всего чисел Фибоначчи f таких, что 1010 < f < 10100.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|