Лента событий:
putout
добавил решение задачи
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
28
Точки P(x1, y1) и Q(x2, y2) с целочисленными координатами вместе с точкой начала координат O(0, 0) образуют треугольник OPQ. Для 0 ≤ x1, y1, x2, y2 ≤ 2 всего 12 треугольников с углом 45 градусов. Вот координаты соответствующих им точек P и Q: (0, 1) (1, 0) Треугольники где изменен только порядок точек P и Q, считаются одинаковыми. Сколько различных треугольников с углом 45 градусов, если координаты точек находятся в пределах: 0 ≤ x1, y1, x2, y2 ≤ 100?
Задачу решили:
21
всего попыток:
33
Рассмотрим два треугольника: X(-175,41), Y(-421,-714), Z(574,-645)
На плоскости заданы 20 точек. Их координаты приведены в таблице:
Сколько треугольников с вершинами в данных точках содержат начало координат?
Задачу решили:
13
всего попыток:
34
На плоскости нарисована пятиконечная звезда с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?
Задачу решили:
3
всего попыток:
3
Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Задачу решили:
5
всего попыток:
9
В лазерной физике используют системы зеркал, которые действуют как линии задержки для проходящего лазерного луча. Луч входит в систему, многократно отражается от зеркал и, в конце концов, выходит обратно. Мы рассмотрим такую линию задержки, имеющую форму эллипса с уравнением 4x2 + y2= 100. В верхней части эллипса сделано отверстие −0.01 ≤ x ≤ +0.01 для входа и выхода луча. В нашей задаче луч направляется из точки с координатами (0,0;10,1) внутрь эллипса, где испытывает первое отражение в точке (1,4;-9,6), Луч отражается по обычному закону "угол падения равен углу отражения". Иначе говоря, падающий и отраженный луч образуют с нормалью в точке падения равные углы. На рисунке слева красной линией показана траектория луча к первым двум точкам отражения. Синим обозначена касательная к эллипсу в первой точке отражения. Наклон касательной в точке эллипса с координатами (x,y) можно найти по формуле: m = −4x/y. Нормаль перпендикулярна касательной в точке падения. На анимированной картинке справа показаны первые 10 отражений луча. Какой длины путь проделает луч внутри эллиптической системы задержки? Результат округлите до целого.
Задачу решили:
5
всего попыток:
7
На рисунке изображена решетка размером 3x2, состоящая из вертикальных, горизонтальных и наклонных отрезков. Для данной решетка существует 37 прямоугольников, вершины которых лежат на узлах решетки. Есть пять решеток меньшего размера: 1x1, 2x1, 3x1, 1x2 и 2x2 (каждое из измерений этих решеток не превосходит соответствующего измерения нашей решетки 3x2). Подсчитаем, сколько прямоугольников можно разместить на узлах этих решеток:
Задачу решили:
31
всего попыток:
49
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.
Задачу решили:
6
всего попыток:
7
Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:
С учетом различных ориентаций можно насчитать шесть видов тримино: Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом: При этом симметричные покрытия мы считали различными. Сколько существует подобного рода покрытий для прямоугольника 8 х 15?
Задачу решили:
7
всего попыток:
9
Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:
Задачу решили:
5
всего попыток:
25
Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек. Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков. Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим три отрезка:
Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения. s0 = 290797 Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|