Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
87
всего попыток:
141
В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей. Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей.
Задачу решили:
45
всего попыток:
61
Найти минимальное n, такое что в записи n! встречаются все двухзначные числа.
Задачу решили:
9
всего попыток:
95
Рассмотрим игру «монополия». Игровое поле следующее:
Движение происходит следующим образом: каждый игрок своим ходом кидает два 6-гранных кубика, и сдвигает фишку на число клеток в сумме выпавших на кубиках. Исключением является случай, когда игрок три раза подряд выкидывает дубль (одинаковые числа на кубиках), в таком случае он попадает на клетку тюрьмы (JAIL). Также, если игрок сдвинув фишку попадает на «G2J», то он перемещается в тюрьму. Игрок начинает с клетки GO и каждый ход бросает пару кубиков и свдигает фишку на сумму чисел выпавших на кубиках по часовой. Если бы не было дополнительных правил — ожидаемым было бы, что вероятности попадения на каждую клетку после броска равна 1/40. Но попадания на клетки G2J(Go to jail, отправляйтесь в тюрьму), CC(извещение) и CH(шанс) изменяет это распределение. Также существует правило, согласно которому если игрок выкидывает три раза дубль (одинаковые значения на кубиках), то вместо третьего хода он попадает в тюрьму. Вначале игры все карты CC и CH перетасованы. Когда игрок становится на одну из таких клеток верхняя карта колоды снимается и после использования кладется под низ. В каждой стопке по 16 карт, часть из которых содержит предписания о перемещении на какую-то из клеток карты, остальные нам не важны. Вот эти карты:
Ваша задача определить вероятность закончить ход на каждой из клеток после очередного броска кубиков. Очевидно что вероятность для Jail наибольшая, G2J нулевая. Считается что игрок не задерживается в тюрьме. Пронумеруем все клетки от 0(GO) до 39(H2) и найдем вероятности для каждой клетки. Три макимальные вероятности получаются для клеток JAIL(10), 6.24%; E3(24), 3.18% и GO(0), 3.09%. В какой-то момент вы потеряли кубик и потому решили обходиться для игры монеткой, подкидывая ее три раза и считая что орел - 1, а решка - 2. При этом "дублем" считается выпадения все три раза либо орла, либо решки. Найдите при таком способе игры 5 наиболее популярных клеток и в ответе укажите сумму их номеров.
Задачу решили:
6
всего попыток:
16
В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.
Задачу решили:
22
всего попыток:
34
В коробке находятся красные и синие шары. Если всего шаров 21, 6 красных и 15 синих, вероятность, взяв наугад два шара, вытащить 2 синих равна ½. Следующее такое сочетание шаров с вероятностью вытащить оба синих шара ½ — 35 красных и 85 синих. Найти все сочетания шаров, таких что всего их в коробке не более 1012. Сколько всего в сумме шаров во всех сочетаниях?
Задачу решили:
11
всего попыток:
30
Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее. Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.
Задачу решили:
6
всего попыток:
18
На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243. Тот же граф можно представить следующей матрицей:
Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.
Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
14
всего попыток:
14
Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.
(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили:
9
всего попыток:
19
Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|