Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
36
Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.
Задачу решили:
2
всего попыток:
58
На рисунке изображен большой круг. Его радиус равен 10000. Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга. Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Задачу решили:
2
всего попыток:
2
В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
Задачу решили:
16
всего попыток:
18
Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n. 5,4,2,1 Ровно две из них начинаются с простых чисел.
Задачу решили:
2
всего попыток:
2
В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
Задачу решили:
1
всего попыток:
2
Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты: Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область. Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?
Задачу решили:
10
всего попыток:
13
Рассмотрим число 1680=24×3×5×7=2×2×2×2×3×5×7, Найдите сумму простых множителей числа G(4444).
Задачу решили:
7
всего попыток:
8
Рассмотрим замкнутые ломаные, каждая из которых
Задачу решили:
3
всего попыток:
3
Построим последовательность случайных чисел sn при помощи генератора Блюм-Блюма-Шуба:
Например, Можно показать, что среди значений p(k) для 0<k≤103 найдется 614 нечетных и 386 четных.
Задачу решили:
5
всего попыток:
43
В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|