Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
29
Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число. Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат. Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа. Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке. Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине. Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии. Сэм и Макс предложили разные конструкции прибора. Работа прибора Сэма показана на картинке слева. Когда этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет В таблице приведен расчет энергопотребления прибора Сэма для числа 137. "137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается). "11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается). "2":(5) × 2 = 10 переключений ("2" включается и выключается). Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии. Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа. Вот, как он будет работать с числом 137: "137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит) "11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2"). "2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2"). Итого: 30 переключений. Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии. Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих 2×107.
Задачу решили:
4
всего попыток:
4
Обозначим через N(i) наименьшее натуральное число n, факториал которого n! делится на (i!)1234567890 . Сумма N(i) для всех составных натуральных i, не превышающих 1000, равна 520804933959105. Найдите сумму N(i) для всех составных натуральных i, не превышающих 1 000 000. В качестве ответа укажите 18 младших разрядов результата.
Задачу решили:
4
всего попыток:
15
Рассмотрим последовательность y0, y1, y2,..., где yi - 32-битные случайные целые числа, т.е. 0≤yi<232, и все значения y равновероятны. Последовательность xi задается рекурсивно следующим образом:
Ясно, что в конце концов появится такой индекс N для которого xi окажется равным 232-1 при всех i≥N. Найдите математическое ожидание величины N2. Результат умножьте на миллион и округлите вниз до целого.
Задачу решили:
1
всего попыток:
1
Обозначим через f(n) количество способов, которыми можно построить башню 3×3×n из блоков 2×1×1. Блоки можно вращать произвольным образом. При этом башни, отличающиеся поворотом или симметрией, считаются различными. Например, f(2) = 229, f(4) = 117805, f(6) = 64647289, f(63) mod 123456789 = 75292539, f(66) mod 123456789 = 56150940. Здесь a mod q означает остаток от деления a на q. Найдите f(612345) mod 123456789.
Задачу решили:
1
всего попыток:
1
Рассмотрим пару последовательностей an и s n , заданных следующим образом: a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n. (Здесь и далее "x mod y" означает остаток от деления x на y.) Первые 10 элементов последовательности an: 1,1,0,3,0,3,5,4,1,9. Первые 10 элементов последовательности sn: 1,3,3,15,15,33,68,100,109,199. Обозначим через h(N,M) количество таких пар (p,q), для которых 1≤p≤q≤N и (sp + sp+1 +… + sq-1 + sq ) mod M = 0 Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8). h(104,103)= 107796. Найдите h(1012,106).
Задачу решили:
1
всего попыток:
3
Бесконечная последовательность a(n) определена для всех целых n следующим образом: Легко видеть, что , , , где e = 2,7182818... – основание натурального логарифма.
Общий член последовательности a(n) можно записать в виде с натуральными коэффициентами A(n) и B(n). Например, Найдите остаток от деления A(109) + B(109) на 77 777 777.
Задачу решили:
0
всего попыток:
0
На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой. Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих на одной с ней вертикали, и N-1 шашек, стоящих на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.
Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода. Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1. Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере. Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0). Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253. Найдите сумму T(k!) для 1≤k≤12.
Задачу решили:
0
всего попыток:
12
Несколько чашек расставлены по кругу, и в каждой из них лежит одна горошина. Игрок совершает ходы следующим образом. Он берет все горошины из одной чашки и раскладывает их одну за другой в чашки, следующие за ней по часовой стрелке. При каждом следующем ходе горошины берут из той чашки, куда была положена последняя горошина на предыдущем ходе. Игра заканчивается, когда возвращается к исходному положению, т. е. в с каждой чашке снова оказывается по одной горошине. Вот игра для случая пяти чашек:
Как видно, для пяти чашек игра заканчивается за 15 ходов. Обозначим через M(x) количество ходов в игре с x чашками. Тогда M(5) = 15. Можно проверить, что M(100) = 10920. Найдите остаток от деления на 79.
Задачу решили:
1
всего попыток:
1
Будем вырезать из бумаги в клетку прямоугольники размером w × h клеток, где w и h – натуральные числа. Некоторые из них можно разрезать по клеточкам на две части так, что из этих частей составится новый прямоугольник другого размера.
Задачу решили:
0
всего попыток:
0
"Передур же поехал дальше долиной реки, вдоль которой расстилались луга. И на одном берегу реки он увидел стадо белых овец, а на другом - стадо черных. И как только одна из белых овец блеяла, черная овца переплывала реку и становилась белой. Когда же блеяла черная овца, одна из белых овец переплывала реку и делалась черной" Первоначально каждое стадо состоит из n овец. Каждая овца, независимо от масти, может заблеять в очередной раз. Передур стремится максимизировать количество черных овец. Для этого он может прогонять прочь любое количество белых овец, но делать это он может лишь после того, как заблеяла очередная овца и до того, как овца с противоположного берега вошла в реку.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|