Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
17
Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек. Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203. Можно подсчитать, что f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443 Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000
Задачу решили:
6
всего попыток:
14
Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени: (√2+√3)2 = 9.898979485566356... (√2+√3)4 = 97.98979485566356... (√2+√3)6 = 969.998969071069263... (√2+√3)8 = 9601.99989585502907... (√2+√3)10 = 95049.999989479221... (√2+√3)12 = 940897.9999989371855... (√2+√3)14 = 9313929.99999989263... (√2+√3)16 = 92198401.99999998915... Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1. В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n. Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013. Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.
Задачу решили:
3
всего попыток:
4
Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:
Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}. Пусть t(n) — количество таких последовательностей длины n. Тогда t(10) = 86195 и t(20) = 5227991891. Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.
Задачу решили:
4
всего попыток:
15
Рассмотрим последовательность y0, y1, y2,..., где yi - 32-битные случайные целые числа, т.е. 0≤yi<232, и все значения y равновероятны. Последовательность xi задается рекурсивно следующим образом:
Ясно, что в конце концов появится такой индекс N для которого xi окажется равным 232-1 при всех i≥N. Найдите математическое ожидание величины N2. Результат умножьте на миллион и округлите вниз до целого.
Задачу решили:
1
всего попыток:
1
Рассмотрим пару последовательностей an и s n , заданных следующим образом: a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n. (Здесь и далее "x mod y" означает остаток от деления x на y.) Первые 10 элементов последовательности an: 1,1,0,3,0,3,5,4,1,9. Первые 10 элементов последовательности sn: 1,3,3,15,15,33,68,100,109,199. Обозначим через h(N,M) количество таких пар (p,q), для которых 1≤p≤q≤N и (sp + sp+1 +… + sq-1 + sq ) mod M = 0 Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8). h(104,103)= 107796. Найдите h(1012,106).
Задачу решили:
2
всего попыток:
5
Пусть a, b, c – натуральные числа, а функция F(n) определена следующим образом:
Задачу решили:
0
всего попыток:
3
Пусть a(n) – наибольший корень многочлена P(x) = x3 - 3nx2 + n, например a(2)=8,97517184... Найдите восемь младших десятичных знаков суммы ∑t(i,333333333) для i=1,2,3,...30.
(5.94338091)
Задачу решили:
10
всего попыток:
12
Возьмем натуральное число n и рассмотрим последовательность s(n)={1+n/1, 2+n/2, 3+n/3, …k+n/k,…}. Если эта последовательность не содержит целых составных чисел, будем говорить, что число n не порождает составных.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|