Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
27
Известно, что любое число вида √n, где n - не является полным квадратом, представимо в виде периодической цепной дроби. Например, Нас будет интересовать количество различных значений в периоде таких цепных дробей. В приведенном примере: √2=[1;(2)], длина периода: 1, различных значений в периоде: 1; Приведем еще примеры: √3=[1;(1,2)], длина периода: 2, различных значений в периоде: 2; Для всех натуральных n, не больших 2009, не являющихся полными квадратами, найдите количество различных значений в периоде цепной дроби √n. В ответе укажите сумму всех количеств.
Задачу решили:
47
всего попыток:
60
На первом рисунке треугольное "магическое" кольцо. Его "магическое" свойство заключается в том, что суммы чисел, расположенных вдоль каждого отрезка, одинаковы. В данном случае они равны 9. Выберем наименьшее "внешнее" число, в данном случае 4, и соответствующую ему тройку (4,3,2 в данном примере). Начиная с этой тройки, будем двигаться по часовой стрелке, выписывая тройки одну за другой: 4,3,2; 6,2,1; 5,1,3. Получившаяся последовательность однозначно определяется исходным "магическим" кольцом. Треугольное "магическое" кольцо можно заполнить 8 различными способами, а сумма троек может быть 9, 10, 11 или 12: Сумма Последовательность Каждую последовательность можно объединить в 9-значное число; минимальное такое число для 3-угольного кольца равно 146362524.
Если числа от 1 до 10, расставить в пятиугольном кольце на втором рисунке, можно аналогичным образом сформировать 16-значную или 17-значную последовательность. Определите минимальное 17-значное число, которое можно получить описанным способом из "магического" пятиугольного кольца.
Задачу решили:
23
всего попыток:
79
Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам: 1. во всех отделениях всех корзин разное (ненулевое) количество мячей; 2. во всех корзинах в сумме по отделениям одинаковое количество мячей; 3. количество мячей в корзинах минимально возможное для данного количества корзин. Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное. У вас 100 корзин, найти сумму мячей в одной корзине.
Задачу решили:
16
всего попыток:
104
Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+d, a+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?
Задачу решили:
35
всего попыток:
65
Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Задачу решили:
18
всего попыток:
30
У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?
Задачу решили:
45
всего попыток:
61
Найти минимальное n, такое что в записи n! встречаются все двухзначные числа.
Задачу решили:
29
всего попыток:
51
Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:
Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b. Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?
Задачу решили:
21
всего попыток:
55
Используя цифры 1, 2, 3, 4 и знаки арифметических действий +, -, * и /, а также скобки, можно получить некоторое множество чисел. Склеивать цифры нельзя (12 + 34 - не разрешено). Например: 8 = (4 * (1 + 3)) / 2 14 = 4 * (3 + 1 / 2) 19 = 4 * (2 + 3) - 1 36 = 3 * 4 * (2 + 1) В этом множестве цепочка максимальной длины из последовательных целых чисел - [-23, 28] равна 52. Найдите 4 различных цифры (отличных от нуля) которые дадут цепочку из последовательных целых наибольшей длины. В ответе запишите эти цифры в порядке возрастания (для 1, 2, 3, 4 ответ был бы 1234).
Задачу решили:
22
всего попыток:
34
В коробке находятся красные и синие шары. Если всего шаров 21, 6 красных и 15 синих, вероятность, взяв наугад два шара, вытащить 2 синих равна ½. Следующее такое сочетание шаров с вероятностью вытащить оба синих шара ½ — 35 красных и 85 синих. Найти все сочетания шаров, таких что всего их в коробке не более 1012. Сколько всего в сумме шаров во всех сочетаниях?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|