Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
22
Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Задачу решили:
11
всего попыток:
30
Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее. Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.
Задачу решили:
29
всего попыток:
79
Сколько десятизначных чисел требуют для своего написания ровно 5 различных цифр?
Задачу решили:
10
всего попыток:
36
Изучим целые положительные решения уравнения при различных натуральных n. Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Задачу решили:
17
всего попыток:
46
Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
(Можно решить при помощи карандаша и бумаги)
Задачу решили:
12
всего попыток:
32
Найдите все натуральные x, y, z, такие что x+y+z < 10000000, x > y > z > 0 и x + y, x - y, x + z, x - z, y + z, y - z все являются полными квадратами. В ответ запишите сумму всех найденных чисел.
Задачу решили:
21
всего попыток:
59
На плоскости нарисован квадрат, одна вершина квадрата имеет координаты (0,0), а противополжная по диагонали - (1000,1000). В каждой точке с целочисленными координатами, находящейся внутри квадрата, размещено наименьшее простое число ближайшее к длине радиус-вектора из начала координат в данную точку. Найдите сумму все простых чисел, размещенных в квадрате.
Задачу решили:
19
всего попыток:
41
Найти количество единиц среди одного миллиона первых цифр десятичной записи числа sin (1).
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
14
всего попыток:
15
Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя. Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них. Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3. А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2. Можно показать, что значения PD(n) не превосходит 3, для любых n. Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|