Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
38
Рассмотрим делители четырех последовательных натуральных чисел 242, 243, 244 и 245: Число Делители Обратите внимание, что все эти числа имеют одинаковое количество делителей, а именно шесть.
Задачу решили:
4
всего попыток:
23
Есть N2 ферзей N разных определённых цветов, по N ферзей каждого цвета. Обозначим как X(N) количество способов расставить все эти ферзи на шахматной доске размера N на N так, чтобы ферзи одного цвета не находились под ударом друг друга. Чему равна сумма X(3) + X(4) + X(5) + X(6) + X(7) + X(8) + X(9) + X(10)? (Координаты клеток доски, а также цвета ферзей, однозначно определены, поэтому разные позиции, подучающиеся одна от другой поворотом, симметрическим отображением или сменой цветов, считаются разными).
Задачу решили:
11
всего попыток:
14
Автоморфные числа - это числа, десятичная запись квадрата которых оканчивается цифрами самого этого числа. Например, число 5 (52=25) или 6 (62=36). Эти числа составляют последовательность: 1, 5, 6, 25, 76, 376, 625, 9 376, 90 625, 109 376, 890 625,... (0 не считается). В системе счисления с основанием 14 также имеются автоморфные числа. Рассмотрим ряд из этих чисел. Найдите число, находящееся на 28-м месте в этом ряду. Ответ запишите в десятичной системе счисления.
Задачу решили:
23
всего попыток:
35
Известная задача от компании Google звучит так: найдите первое 10-значное простое число, состоящее из последовательных цифр в записи числа e. Немного усложним условие - найдите первое 11-значное число.
Задачу решили:
22
всего попыток:
36
Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.
Задачу решили:
16
всего попыток:
18
Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n. 5,4,2,1 Ровно две из них начинаются с простых чисел.
Задачу решили:
10
всего попыток:
13
Рассмотрим число 1680=24×3×5×7=2×2×2×2×3×5×7, Найдите сумму простых множителей числа G(4444).
Задачу решили:
2
всего попыток:
5
Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Задачу решили:
3
всего попыток:
7
Будем называть натуральное число k опорным, если существует такая пара натуральных чисел m≥0 и n≥k, для которых
Задачу решили:
7
всего попыток:
9
Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми. Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721. (В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.) Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|