img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 18
Задача опубликована: 31.05.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: falagar

Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.

Задачу решили: 4
всего попыток: 12
Задача опубликована: 07.06.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?

Задачу решили: 59
всего попыток: 88
Задача опубликована: 21.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?

Задачу решили: 51
всего попыток: 92
Задача опубликована: 28.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: katalama (Иван Максин)

Цепочки цифр (строки) создаются по следующему правилу:
Первая строка состоит из двух цифр "1". Каждая из последующих цепочек создается такими действиями: берется цифра, на единицу большая максимальной цифры, использовавшейся в предыдущей строке. Эта цифра вставляется в начало, в конец и между всеми цифрами предыдущей строки. Вот первые 4 строки, созданные по этому правилу:
(1) 11
(2) 21212
(3) 32313231323
(4) 43424341434243414342434

Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.

Задачу решили: 11
всего попыток: 33
Задача опубликована: 12.07.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть d(n) обозначает число всех натуральных делителей натурального числа n. Найдите максимальное значение величины d(n)5/n, кодга n пробегает числа от 1 до 10100. Ответ округлите до ближайшего целого.

Задачу решили: 5
всего попыток: 22
Задача опубликована: 26.07.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел.

Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения.

Сколько существует различных "круговых" цепочек состоящих из всех костяшек?

Задачу решили: 21
всего попыток: 48
Задача опубликована: 02.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Vkorsukov

Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x.
Например, K(100) = 100 - 001 = 099, K(2414) = 4421 - 1244 = 3177.
Капрекар доказал, что если начать с некоторого четырехзначного числа x, в котором не все цифры равны между собой, и последовательно применять к нему эту операцию (вычислять K(x), K(K(x)), . . . ), то рано или поздно получится число 6174. Для него верно равенство
K(6174) = 7641 - 1467 = 6174, поэтому на нем процесс зациклится.
Найдите минимальное число, меньшее миллиона, такое что в результате некоторой последовательности операций K(x), K(K(x)),... получается максимальное число.

Задачу решили: 26
всего попыток: 64
Задача опубликована: 06.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?

Задачу решили: 13
всего попыток: 30
Задача опубликована: 06.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: SA

Суперферзь отличается от обычного тем, что он может ходить и как конь. Сколькими способами можно расствить 14 суперферзей на шахматной доске размера 14 на 14 таким образом, чтобы ни один суперферзь не находился под ударом другого суперферзя? Позиции, получающиеся друг от друга поворотом или зеркальным отображением, считаются разными.

Задачу решили: 33
всего попыток: 38
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим делители четырех последовательных натуральных чисел 242, 243, 244 и 245:

Число    Делители
242    1, 2, 11, 22, 121, 242
243    1, 3, 9, 27, 81, 243
244    1, 2, 4, 61, 122, 244
245    1, 5, 7, 35, 49, 245

Обратите внимание, что все эти числа имеют одинаковое количество делителей, а именно шесть.
Найдите количество натуральных чисел n, не превышающих 107, для которых числа n, n+1, n+2 и n+3 имеют одинаковое количество делителей.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.