Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
18
Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.
Задачу решили:
4
всего попыток:
12
На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?
Задачу решили:
59
всего попыток:
88
Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?
Задачу решили:
51
всего попыток:
92
Цепочки цифр (строки) создаются по следующему правилу: Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.
Задачу решили:
11
всего попыток:
33
Пусть d(n) обозначает число всех натуральных делителей натурального числа n. Найдите максимальное значение величины d(n)5/n, кодга n пробегает числа от 1 до 10100. Ответ округлите до ближайшего целого.
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек?
Задачу решили:
21
всего попыток:
48
Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x.
Задачу решили:
26
всего попыток:
64
Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?
Задачу решили:
13
всего попыток:
30
Суперферзь отличается от обычного тем, что он может ходить и как конь. Сколькими способами можно расствить 14 суперферзей на шахматной доске размера 14 на 14 таким образом, чтобы ни один суперферзь не находился под ударом другого суперферзя? Позиции, получающиеся друг от друга поворотом или зеркальным отображением, считаются разными.
Задачу решили:
33
всего попыток:
38
Рассмотрим делители четырех последовательных натуральных чисел 242, 243, 244 и 245: Число Делители Обратите внимание, что все эти числа имеют одинаковое количество делителей, а именно шесть.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|