Лента событий:
putout
добавил решение задачи
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
30
У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
9
всего попыток:
19
Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.
Задачу решили:
4
всего попыток:
12
На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?
Задачу решили:
7
всего попыток:
13
Даны наборы чисел (xn, yn, rn), n=1,...100, задающие окружности с центром в точке с координатами (xn, yn) и радиусом rn. Эти числа выбираются так двухзначные числа состоящие из цифр после запятой в записи числа π, стоящие соответственно для xn - на n и n+1 местах, для yn - на n+2 и n+3 местах, и rn - на n+4 и n+5 местах. Таким образом, x1=14, y1=15, r1=92 и т.д. Найдите количество точек пересечения (включая точки касания) этих окружностей.
Задачу решили:
2
всего попыток:
58
На рисунке изображен большой круг. Его радиус равен 10000. Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга. Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Задачу решили:
4
всего попыток:
6
Пусть на координатной плоскости точка O(0,0) - начало координат, а C - точка с координатами (r,r). Например, N(1)=2, и N(4)=60. Найдите N(227).
Задачу решили:
1
всего попыток:
2
Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты: Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область. Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?
Задачу решили:
7
всего попыток:
8
Рассмотрим замкнутые ломаные, каждая из которых
Задачу решили:
4
всего попыток:
4
Существует несколько определений эллипса. Вот одно из них: <page-break/> Рассмотрим теперь точку P с целочисленными координатами, лежащую во внешней области эллипса e, и проведем из нее прямые PS и PR, касающиеся эллипса e в точках S и R.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|