img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 26
всего попыток: 57
Задача опубликована: 18.05.09 13:54
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 300

Рассмотрим такие диофантовы уравнения:

x2-Dy2=1.

Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое:

6492-13*1802=1.

Легко показать, что для D - полного квадрата решений не существует.

Рассмотрим минимальные решения D <= 10:

32 - 2*22=1;

22 - 3*12=1;

92 - 5*42=1;

52 - 6*22=1;

82 - 7*32=1;

32 - 8*12=1;

192 - 10*62=1.

Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10.

Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.

Задачу решили: 61
всего попыток: 97
Задача опубликована: 02.11.09 08:00
Прислал: admin img
Вес: 2
сложность: 3 img
баллы: 500
Лучшее решение: leonidr321 (Леонид Розенблат)

Число π начинается с комбинации цифр 3,14159... Найдите первое вхождение последовательности цифр "314" в десятичной записи числа π после запятой. В ответ введите количество знаков после запятой до этой последовательности. 

Задачу решили: 20
всего попыток: 26
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42.
Будем рассматривать тройки натуральных чисел (a, b, c) обладающие следующими свойствами:

1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1.
2. a < b
3. a + b = c
4. rad(abc) < c

Например, такой тройкой является (5, 27, 32):
НОД(5, 27) = НОД(5, 32) = НОД(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32

Для некоторых c имеется более одной такой тройки (a, b, c). До 10000 таких c всего 15.

Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 37
всего попыток: 45
Задача опубликована: 29.11.10 08:00
Прислал: admin img
Вес: 3
сложность: 3 img
баллы: 100

Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.

Задачу решили: 1
всего попыток: 2
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100

Найдите количество различных троек натуральных чисел x < y  < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).

Задачу решили: 9
всего попыток: 26
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом:

u(0) = 109
u(n+1) = f(u(n))

Найдите u(1018).

Задачу решили: 5
всего попыток: 6
Задача опубликована: 11.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

k-значное натуральное число называется сбалансированным, если сумма его первых  [k/2]  цифр его равна сумме последних  [k/2] цифр. Здесь  x  обозначает округление вверх, например, [π] = 4 и [5] = 5.
Понятно, что все палиндромы являются сбалансированными, как и число 13722.
Обозначим через T(n) сумму всех сбалансированных чисел, меньших, чем 10n.
Например, T(1) = 45, T(2) = 540 and T(5) = 334795890.
Найдите остаток от деления T(2000) на 315.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 23.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим нечетное число 225 = 32 × 52.
2252 = 50625 = 34 × 54 = 92 × 252. Поэтому функция Эйлера φ(50625) = 2 × 33 × 4 × 53 = 23 × 33 × 53 .
Итак, число  50625 является квадратом, а φ(50625) является кубом.
Найдите сумму нечетных n, 1 < n < 1010 , для которых функция Эйлера φ(n2) является кубом натурального числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.