img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 61
всего попыток: 97
Задача опубликована: 02.11.09 08:00
Прислал: admin img
Вес: 2
сложность: 3 img
баллы: 500
Лучшее решение: leonidr321 (Леонид Розенблат)

Число π начинается с комбинации цифр 3,14159... Найдите первое вхождение последовательности цифр "314" в десятичной записи числа π после запятой. В ответ введите количество знаков после запятой до этой последовательности. 

Задачу решили: 20
всего попыток: 26
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42.
Будем рассматривать тройки натуральных чисел (a, b, c) обладающие следующими свойствами:

1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1.
2. a < b
3. a + b = c
4. rad(abc) < c

Например, такой тройкой является (5, 27, 32):
НОД(5, 27) = НОД(5, 32) = НОД(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32

Для некоторых c имеется более одной такой тройки (a, b, c). До 10000 таких c всего 15.

Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 6
всего попыток: 25
Задача опубликована: 12.04.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 3 img
баллы: 300

Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.

Задачу решили: 11
всего попыток: 33
Задача опубликована: 17.05.10 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?

Задачу решили: 15
всего попыток: 41
Задача опубликована: 13.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 300
Лучшее решение: Kruger

Сколько чисел начинается с цифры 9 среди чисел 2n, где n=0, 1,...,109?

Задачу решили: 37
всего попыток: 45
Задача опубликована: 29.11.10 08:00
Прислал: admin img
Вес: 3
сложность: 3 img
баллы: 100

Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.

Задачу решили: 9
всего попыток: 27
Задача опубликована: 20.12.10 08:00
Прислал: admin img
Вес: 3
сложность: 3 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что ровно 2 ферзя бьют друг друга?

Задачу решили: 10
всего попыток: 20
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сообщение в системе шифрования RSA представляет собой некоторое число m. Если необходимо зашифровать текст, сначала его каким-то известным образом превращают в число, а затем происходит собственно шифрование.

Шифрование осуществляется следующим образом:

  • Выбирают два различных простых числа p и q.
  • Вычисляют n=pq и φ=(p-1)(q-1). Число n должно быть достаточно велико, чтобы сообщения m попадали в интервал [0,n-1].
  • Выбирают целое число e, 1<e<φ, не имеющее общих делителей с φ (gcd(e,φ)=1).
  • Из числа m получают зашифрованное сообщение c=me mod n (здесь a mod b означает остаток от деления a на b).

Чтобы расшифровать текст, действуют следующим образом:

  • Находят число d такое, что ed=1 mod φ
  • Для зашифрованного сообщения c, вычисляют m=cd mod n.

Однако иногда попадаются такие неудачные сочетания e и m, что me mod n=m. Будем называть такие сообщения нескрытыми. Необходимо выбирать e таким образом, чтобы нескрытых сообщений было меньше. Например, пусть p=19 и q=37.
Тогда n=19*37=703, и φ=18*36=648.
Если мы выберем e=181, абсолютно все сообщения m (0≤m≤n-1) окажутся нескрытыми, хотя условие gcd(181,648)=1 выполняется. Такой выбор крайне неудачен.
К сожалению, для любого e, выбранного согласно указанным правилам, всегда найдется сколько-то нескрытых сообщений.
Возьмем p=1009 и q=3643. Найдите количество таких e, 1<e<φ(1009,3643) gcd(e,φ)=1, для которых количество нескрытих сообщений минимально.

Задачу решили: 17
всего попыток: 27
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 300
Лучшее решение: Oleg (Олег Пилипёнок)

Матрица размером 100 на 100 элементов заполняется таким образом: в позиции с координатами (i,j) размещается цифра, находящаяся на i*j месте после запятой в записи числа π, если эта цифра четная, то она записывается с положительным знаком, если нет - с отрицательным.

Рассмотрим "внутренние" матрицы 10 на 10, состоящие из элементов:

am,n, am+1,n,...,am+9,n,
am,n+1, am+1,n+1,...,am+9,n+1,
...
am,n+9, am+1,n+9,...,am+9,n+9.

Суммой матрицы назовем сумму ее элементов. Найдите максимальное значение суммы среди всех "внутренних" матриц.

Задачу решили: 1
всего попыток: 2
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100

Найдите количество различных троек натуральных чисел x < y  < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.