Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
79
Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам: 1. во всех отделениях всех корзин разное (ненулевое) количество мячей; 2. во всех корзинах в сумме по отделениям одинаковое количество мячей; 3. количество мячей в корзинах минимально возможное для данного количества корзин. Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное. У вас 100 корзин, найти сумму мячей в одной корзине.
Это открытая задача
(*?*)
Строку натуральных чисел (1, 3, 5, 2, 4) попробуем упорядочить при помощи специальных перестановок: разделим строку на 2 части (1, 3, 5) и (2, 4), первую строку запишем в обратном порядке и присоединим ко второй, в результате получим (5, 3, 1, 2, 4). Далее действуем также - разбиваем строку на 2 любые части (любая часть может быть пустой), первую часть записываем в обратном порядке и просоединяем ко второй. При помощи перестановок: (5, 3, 1, 2, 4) = (5, 3, 1, 2, 4) + () -> (4, 2, 1, 3, 5) (4, 2, 1, 3, 5) = (4, 2, 1, 3) + (5) -> (3, 1, 2, 4, 5) (3, 1, 2, 4, 5) = (3, 1, 2) + (4, 5) -> (2, 1, 3, 4, 5) (2, 1, 3, 4, 5) = (2, 1) + (3, 4, 5) -> (1, 2, 3, 4, 5) За какое минимальное количество перестановок гарантированно можно упорядочить строку чисел от 1 до 100?
Задачу решили:
19
всего попыток:
28
Будем изготавливать из проволоки прямоугольные треугольники с целочисленными сторонами. Для этого нам потребуется кусок проволоки длиной не менее 12 см, а из двенадцатисантиметрового куска мы сможем согнуть такой треугольник ровно одним способом. Существует бесконечно много чисел, которые могли бы быть периметром прямоугольного треугольника, например: С другой стороны, если взять проволоку длиной 20, прямоугольный треугольник с целочисленными сторонами из нее не согнешь, а из проволоки длиной 120 см можно сделать три разных треугольника: 120 см: (30,40,50), (20,48,52), (24,45,51)
Задачу решили:
94
всего попыток:
277
Сколько нулей в записи числа 2009!?
Задачу решили:
34
всего попыток:
53
Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами: 10 + 22 А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?
Задачу решили:
61
всего попыток:
109
Найти количество всех делителей числа 22009, в десятичной записи которых отсутствует цифра ноль.
Задачу решили:
16
всего попыток:
104
Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+d, a+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?
Задачу решили:
13
всего попыток:
26
Попытаемся разложить число 5 в сумму простых: 5 = 5 5 = 2 + 3 5 = 3 + 2 Назовем количеством композиций числа n из простых чисел - количество всех упорядоченных последовательностей простых чисел, в сумме составляющих n. Количество композиций для n = 5: 3, в примере последние две композиции различны. Назовем количеством разбиений числа n на простые - количество всех неупорядоченных множеств из простых чисел в сумме дающих n. Количество разбиений для n = 5: 2, в примере последние два разбиения считаются одинаковыми. Найдите минимальное n для которого отношение числа композиций к числу разбиений больше одного миллиарда. В ответе запишите разность числа композиций и разбиений для этого n.
Задачу решили:
35
всего попыток:
65
Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Задачу решили:
17
всего попыток:
35
Для каждого натурального n можно найти число раскладываний камней на кучки. Например, для n=5 количество различных раскладываний 7: ООООО ОООО О ООО ОО ООО О О ОО ОО О ОО О О О О О О О О Найдите минимальное количество камней, для которого сумма цифр количества различных раскладываний больше 1000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|