img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 79
Задача опубликована: 29.05.09 09:45
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам:

1. во всех отделениях всех корзин разное (ненулевое) количество мячей;

2. во всех корзинах в сумме по отделениям одинаковое количество мячей;

3. количество мячей в корзинах минимально возможное для данного количества корзин.

Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное.

У вас 100 корзин, найти сумму мячей в одной корзине.

Это открытая задача (*?*)
Задача опубликована: 30.05.09 10:48
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 500
Лучшее решение: emm76

Строку натуральных чисел (1, 3, 5, 2, 4) попробуем упорядочить при помощи специальных перестановок: разделим строку на 2 части (1, 3, 5) и (2, 4), первую строку запишем в обратном порядке и присоединим ко второй, в результате получим (5, 3, 1, 2, 4). Далее действуем также - разбиваем строку на 2 любые части (любая часть может быть пустой), первую часть записываем в обратном порядке и просоединяем ко второй. При помощи перестановок:

(5, 3, 1, 2, 4) = (5, 3, 1, 2, 4) + () -> (4, 2, 1, 3, 5)

(4, 2, 1, 3, 5) = (4, 2, 1, 3) + (5) -> (3, 1, 2, 4, 5)

(3, 1, 2, 4, 5) = (3, 1, 2) + (4, 5) -> (2, 1, 3, 4, 5)

(2, 1, 3, 4, 5) = (2, 1) + (3, 4, 5) -> (1, 2, 3, 4, 5)

За какое минимальное количество перестановок гарантированно можно упорядочить строку чисел от 1 до 100?  

Задачу решили: 19
всего попыток: 28
Задача опубликована: 30.05.09 10:58
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Будем изготавливать из проволоки прямоугольные треугольники с целочисленными сторонами. Для этого нам потребуется кусок проволоки длиной не менее 12 см, а из двенадцатисантиметрового куска мы сможем согнуть такой треугольник ровно одним способом. Существует бесконечно много чисел, которые могли бы быть периметром прямоугольного треугольника, например:
12 см: (3,4,5)
24 см: (6,8,10)
30 см: (5,12,13)
36 см: (9,12,15)
40 см: (8,15,17)
48 см: (12,16,20)

С другой стороны, если взять проволоку длиной 20, прямоугольный треугольник с целочисленными сторонами из нее не согнешь, а из проволоки длиной 120 см можно сделать три разных треугольника:

120 см: (30,40,50), (20,48,52), (24,45,51)
Какова наименьшая длина проволоки, позволяющая сложить из нее ровно 99 прямоугольных треугольников с целочисленными сторонами?

Задачу решили: 94
всего попыток: 277
Задача опубликована: 31.05.09 07:46
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Сколько нулей в записи числа 2009!?

Задачу решили: 34
всего попыток: 53
Задача опубликована: 31.05.09 07:47
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Число 32 можно представить в виде суммы нескольких двузначных чисел ровно девятью способами:

10 + 22
11 + 21
12 + 20
13 + 19
14 + 18
15 + 17
16 + 16
10 + 10 + 12
10 + 11 + 11

А сколькими способами можно представить число 100 в виде суммы двузначных слагаемых?

Задачу решили: 61
всего попыток: 109
Задача опубликована: 31.05.09 09:33
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти количество всех делителей числа 22009, в десятичной записи которых отсутствует цифра ноль.

Задачу решили: 16
всего попыток: 104
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральные числа a ≤ b ≤ c ≤ d такие, что 1000 <= a,b,c,d <= 1000000 и a+b, a+c, a+d, b+c, b+d, c+da+b+c+d являются квадратами некоторых целых чисел. Сколько таких различных четверок чисел существует?

Задачу решили: 13
всего попыток: 26
Задача опубликована: 01.06.09 09:18
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Попытаемся разложить число 5 в сумму простых:

5 = 5

5 = 2 + 3

5 = 3 + 2

Назовем количеством композиций числа n из простых чисел - количество всех упорядоченных последовательностей простых чисел, в сумме составляющих n. Количество композиций для n = 5: 3, в примере последние две композиции различны.

Назовем количеством разбиений числа n на простые - количество всех неупорядоченных множеств из простых чисел в сумме дающих n. Количество разбиений для n = 5: 2, в примере последние два разбиения считаются одинаковыми.

Найдите минимальное n для которого отношение числа композиций к числу разбиений больше одного миллиарда. В ответе запишите разность числа композиций и разбиений для этого n.

Задачу решили: 35
всего попыток: 65
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 17
всего попыток: 35
Задача опубликована: 03.06.09 11:16
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Для каждого натурального n можно найти число раскладываний камней на кучки. Например, для n=5 количество различных раскладываний 7:

ООООО

ОООО О

ООО ОО

ООО О О

ОО ОО О

ОО О О О

О О О О О

Найдите минимальное количество камней, для которого сумма цифр количества различных раскладываний больше 1000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.