Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
0
всего попыток:
6
В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, из которого такими ходами можно получить наибольшее количество различных простых чисел.
Задачу решили:
34
всего попыток:
69
Очень простое число это такое простое число, любые несколько первых цифр которого также являются простыми числами. Например, простое число 2333 является очень простым, т.к. числа 2, 23 и 233 также являются простыми. Найдите максимальное очень простое число.
Задачу решили:
16
всего попыток:
25
Найти сумму таких натуральных чисел n, для которых n2+1, n2+3, n2+7, n2+9, n2+13 и n2+21 являются последовательными простыми числами, и n < 150 000 000.
Задачу решили:
11
всего попыток:
33
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?
Задачу решили:
33
всего попыток:
48
Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.
Задачу решили:
9
всего попыток:
19
Посмотрите на таблицу. Легко проверить, что максимальная сумма чисел, стоящих подряд вдоль одного из диагональных направлений, равна 16 (= 8 + 7 + 1).
Давайте теперь рассмотрим ту же задачу для таблицы большего размера. Для этого будем использовать генератор случайных чисел Фибоначчи с запаздываниями:
Задачу решили:
0
всего попыток:
0
Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Задачу решили:
6
всего попыток:
7
Попробуем записать число 1/3 в виде суммы обратных квадратов различных натуральных чисел. Например, используя числа {2, 5, 6, 10, 15, 30}: Используя числа до 45 включительно, это можно сделать четырьмя способами. Вот соответствующие наборы чисел:
Задачу решили:
5
всего попыток:
16
Посмотрим на десятичную запись первых неотрицательных целых чисел:
Задачу решили:
8
всего попыток:
19
Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:
А сколько решений будет иметь это уравнение при n=16?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|