img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 12
Задача опубликована: 07.06.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?

Задачу решили: 0
всего попыток: 0
Задача опубликована: 14.06.10 08:00
Прислал: admin img
Источник: Московская областная олимпиада школьников
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Федя хочет доказать Володе, что его способ сложения не обладает свойством ассоциативности. В частности, Федя утверждает, что существуют три числа, для которых важен порядок, в котором их складывают (при этом разрешается складывать числа в любом порядке, например можно сначала сложить первое число и последнее, а затем прибавить к ним среднее). Федя привел даже пример трех таких чисел.
Сколько существует троек чисел a, b, c, таких, что a < b < c < 1000000 и a+(b+c) < (a+b)+c.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 28.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Попробуем записать число 1/3 в виде суммы обратных квадратов различных натуральных чисел. Например, используя числа {2, 5, 6, 10, 15, 30}:

Используя числа до 45 включительно, это можно сделать четырьмя способами. Вот соответствующие наборы чисел:
{2, 5, 6, 10, 15, 30}
{2, 5, 7, 10, 14, 15, 21, 30}
{2, 4, 12, 14, 15, 20, 28, 42}
{2, 6, 7, 9, 10, 12, 20, 28, 35, 36, 45}
Сколькими способами можно записать 1/3 в виде суммы обратных квадратов различных натуральных чисел, не превышающих 80?

Задачу решили: 51
всего попыток: 81
Задача опубликована: 05.07.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Была исходная последовательность символов:
AAABBABB

В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка:
AAABBABBBBABBAAA

Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?

Задачу решили: 6
всего попыток: 22
Задача опубликована: 19.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.


Используя эту процедуру и не более n одинаковых конденсаторов, мы можем собрать некоторое количество цепей различной суммарной емкости. Например, используя не более 3 конденсаторов с электрической емкостью 60μF каждый, мы можем получить 7 различных значений общей емкости цепи:


(Известно, что, соединяя конденсаторы C1, C2 … параллельно, мы получим общую емкость CT=C1+C2+..., а соединяя последовательно – общую емкость )
Если мы обозначим через D(n) количество различных значений емкости электрических цепей, которые можно собрать, используя не более n одинаковых конденсаторов, то получим D(1)=1, D(2)=3, D(3)=7,...
Найдите D(19).

Задачу решили: 31
всего попыток: 49
Задача опубликована: 19.07.10 08:00
Прислал: admin img
Источник: Всеукраинская олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задачу решили: 5
всего попыток: 22
Задача опубликована: 26.07.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел.

Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения.

Сколько существует различных "круговых" цепочек состоящих из всех костяшек?

Задачу решили: 5
всего попыток: 16
Задача опубликована: 26.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Посмотрим на десятичную запись первых неотрицательных целых чисел:

0 1 2 3 4 5 6 7 8 9 10 11 12....

Выберем одну из цифр, например единицу (d=1), а затем начнем выписывать наши числа, подсчитывая количество использованных единиц. Обозначим полученное количество через  f(n,1) и запишем его против каждого числа n. Вот что получится:

n    f(n,1)
0    0
1    1
2    1
3    1
4    1
5    1
6    1
7    1
8    1
9    1
10    2
11    4
12    5


Заметьте, что f(n,1) не равно 3 ни при каких n.
Уравнение f(n,1)=n имеет решения n=0 и n=1, а следующее решение - только n=199981.

Аналогично, подсчитаем, сколько раз мы использовали цифру d, и обозначим полученное количество через f(n,d).
Заметим, что для каждой цифры d, кроме нуля, n=0 является первым решением уравнения f(n,d)=n.
Обозначим через s(d) сумму всех решений уравнения f(n,d)=n. Например, s(1)=22786974071.

Найдите ∑ s(d) при 0 ≤ d ≤ 9.

Замечание: Если для какого-то n f(n,d)=n для нескольких значений d, n необходимо учитывать каждый раз для каждой цифры d.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 02.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:

1/1+1/1=20/10 1/1+1/2=15/10 1/1+1/5=12/10 1/1+1/10=11/10 1/2+1/2=10/10
1/2+1/5=7/10 1/2+1/10=6/10 1/3+1/6=5/10 1/3+1/15=4/10 1/4+1/4=5/10
1/4+1/20=3/10 1/5+1/5=4/10 1/5+1/10=3/10 1/6+1/30=2/10 1/10+1/10=2/10
1/11+1/110=1/10 1/12+1/60=1/10 1/14+1/35=1/10 1/15+1/30=1/10 1/20+1/20=1/10

А сколько решений будет иметь это уравнение при n=16?

+ 0
+ЗАДАЧА 305. Блоха-знаток (Игорь Чевдарь)
  
Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.08.10 08:00
Прислал: admin img
Источник: Открытый чемпионат Урала по спортивному прогр...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами.

Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.