img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 15
Задача опубликована: 08.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольник Паскаля:

 1 
 1  1 
 1  2  1 
 1  3  3  1 
 1  4  6  4  1 
 1  5  10  10  5  1 
 1  6  15  20  15  6  1 
1  7  21  35  35  21  7  1
.........

В первых восьми его строках содержится 12 различных чисел:
1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 и 35.
Назовем натуральное число свободным от квадратов, если оно не кратно никакому квадрату простого числа. В первых восьми строках  треугольника Паскаля содержится 10 различных чисел, свободных от квадратов, а два числа – 4 и 20 – не свободны от квадратов.
Сколько различных чисел, свободных от квадратов, содержится в первых 500 строках треугольника Паскаля?

Задачу решили: 18
всего попыток: 27
Задача опубликована: 11.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Числами Хэмминга называются такие натуральные числа, у которых нет простых делителей, больших, чем 5. Вот первые числа Хэмминга: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. Их сумма равна 75. Существует 1105 чисел Хэмминга, не превышающих 108. Их сумма равна 14954859000

Если у натурального числа нет простых делителей, превышающих n, мы будем называть его обобщенным числом Хэмминга типа n. Например, числа Хэмминга являются обобщенными числами Хэмминга типа 5.

Найдите сумму обобщенных чисел Хэмминга типа 70, не превышающих 2?109.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 15.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На доске записали 17-значное число, являющееся полным квадратом. Затем 8 цифр стерли и заменили их звездочками. Вот, что получилось:
1 * 4 * 1 * 4 * 1 * 4 * 1 * 4 * 1
Найдите сумму всех 17-значных чисел, которые могли быть написаны на доске первоначально.

Задачу решили: 11
всего попыток: 14
Задача опубликована: 09.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим числа t(n) вида 2n2-1 при n>1. Вот первые восемь таких чисел:
7, 17, 31, 49, 71, 97, 127, 161
Шесть из них – простые, и только два (49=7×7 и 161=7×23) – составные. Сумма простых t(n) при n≤9 равна 7+17+31+71+97+127=350. Сумма простых t(n) при n≤10000 равна 135049480088. Найдите сумму простых t(n) при n≤3?107. В качестве ответа укажите 8 младших разрядов результата.

Задачу решили: 10
всего попыток: 14
Задача опубликована: 04.07.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201 ... определена следующим образом:
1. T1 = T2 = T3 = 1
2. Tn = Tn-1 + Tn-2 + Tn-3.
Можно показать, что число 27 не является делителем ни одного из членов этой последовательности, и это первое нечетное число, обладающее данным свойством.
Вот все нечетные числа, не превышающие 100 и не являющиеся делителями членов данной последовательности:
27, 81, 91
Их сумма равна 199.
Найдите сумму всех нечетных чисел, не превышающих 2011 и не являющихся делителями членов данной последовательности.

Задачу решили: 5
всего попыток: 8
Задача опубликована: 01.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим число 3600. Оно имеет интересную особенность:
3600 = 482 + 362
3600 = 202 + 2×402
3600 = 302 + 3×302
3600 = 402 + 5×202
Аналогично, 98569 = 2882 + 1252 = 12 + 2×2222 = 372 + 3×1802 = 1072+5×1322.
В 1747 году Эйлер выяснил, какие числа можно представить в виде суммы двух квадратов. А мы хотим выявить числа, которые допускают представление четырьмя следующими способами:
n = a12 + b12,
n = a22 + 2 b22,
n = a32 + 3 b32,
n = a52 + 5 b52,
где  все ai и bi – целые положительные числа.
Существует 144513 подобных чисел, не превышающих 2×107.
А сколько таких чисел не превышает 2×109?

Задачу решили: 5
всего попыток: 5
Задача опубликована: 08.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для произвольных строк A и B определим FA,B как последовательность строк (A,B,AB,BAB,ABBAB,...), в которой каждая строка, начиная с третьей, является конкатенацией (соединением) двух предыдущих.
Затем определим DA,B(n) как n–ый знак первого члена последовательности FA,B, который содержит хотя бы n знаков.
Например, пусть A=1415926535, B=8979323846, и мы хотим найти, скажем, DA,B(35).
Вот несколько первых членов последовательности FA,B:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
Тогда DA,B(35) -это тридцать пятый знак пятого члена последовательности, то есть 9.
Теперь возьмем в качестве A первые сто знаков после запятой числа π:
1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,
а в качестве B возьмем следующие сто знаков:
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196.
Найдите ΣDA,B(n2) для 1<=n<=1000000.

Задачу решили: 15
всего попыток: 30
Задача опубликована: 15.08.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Совершенные числа равны сумме своих делителей (исключая само число). Полусовершенными числами назовем натуральные числа, которые на единицу больше или меньше суммы своих делителей. Например, 2 или 4. Найдите сумму всех полусовершенных чисел, меньших 109.

Задачу решили: 2
всего попыток: 5
Задача опубликована: 20.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Для совершенных чисел n, как вы, вероятно, знаете, σ(n) = 2n. Поэтому назовем коэффициентом совершенства отношение p(n)=σ(n) / n. У совершенных чисел коэффициент совершенства равен 2.
Найдите сумму таких натуральных n < 1018, у которых коэффициент совершенства является несократимой дробью со знаменателем 3.

Задачу решили: 6
всего попыток: 10
Задача опубликована: 21.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Напомним, что функция Эйлера φ(n) определена для натуральных аргументов n и равна количеству натуральных чисел, не больших n и взаимно простых с ним.
6227180929 является наименьшим числом, для которых φ(n)=13!
Найдите сумму всех n, для которых φ(n)=13!

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.