Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
3
всего попыток:
4
Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:
Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}. Пусть t(n) — количество таких последовательностей длины n. Тогда t(10) = 86195 и t(20) = 5227991891. Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.
Задачу решили:
0
всего попыток:
0
Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n. Например, U( 1234567890, 107-10) = 24. Найдите U(1234567890987654321, 1012-10).
Задачу решили:
5
всего попыток:
6
Возьмем натуральное число k, и будем выписывать последовательность рациональных чисел ai = xi/yi следующим образом: 1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6 Поэтому f(20) = 6. Можно проверить, что f(2) = 2, f(3) = 1 и Σf(k3) = 18764 для простых k, не превышающих 100. Найдите Σf(k3) для простых k, не превышающих 5×106.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|